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1. Basics

The following model of bargaining, based on Rubinstein (1982) and St̊ahl (1977) represents
possibly one of the simplest examples of an infinite game which isn’t repeated. It looks
“repeated”, as you will see in a minute, but it is not formally a repeated game. It is also a
beautiful example of the bite created by subgame perfection. In addition, Rubinstein-St̊ahl
bargaining is of interest in itself and has found many applications in the literature.

Suppose there are two persons, call them 1 and 2. They are dividing a cake of size 1. They
take turns in proposing divisions of the cake; at each round, person i proposes a division and
person j must accept or reject. If there is an acceptance, the game ends and the proposed
division is implemented. If there is a rejection, we move on to the next round, and proposer
and responder switch roles. If a period passes, the next period is discounted. The discount
factor of player i is δi ∈ (0, 1). Thus, if a division (x, 1 − x) is settled on at date t, the two
payoffs are δt

1x and δt
2(1− x), and if no division is ever settled on at all, then the payoffs are

zero.

This is a special case of the infinite extensive form already studied, and the definitions of
Nash and subgame perfect equilibrium apply without any change.

2. Nash, Without Subgame Perfection

There are lots of Nash equilibria of this game. Specifically, fix any division of the cake; call
it (x1, x2) = (y, 1 − y). Now think of the following strategies. Each proposer proposes this
division initially and following any history. Each responder i uses the response rule following
any history and proposal: yes if and only if she is given at least xi. It is easy to check that
this strategy profile is Nash.

However, such an equilibrium is not subgame perfect. Under the strategies described above,
nodes in which player i is offered a bit less than xi will never be visited. But subgame
perfection requires that these nodes be checked for equilibrium behavior.

In particular, if person i feels that she will get xi tomorrow she should certainly be willing
to accept δixi + ε today. But for small ε this number is in fact smaller than xi, and the going
strategy is telling her to refuse such an offer. So the equilibrium isn’t subgame perfect.

3. Perfect Equilibrium

A remarkable property of this two-person bargaining model is that subgame perfection wipes
out all but one of these multiple Nash equilibria:

Theorem 1. There is a unique subgame perfect equilibrium payoff vector in the two-person
bargaining model.
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Proof. Let Mi be the maximum equilibrium payoff and mi be the minimum equilibrium
payoff to person i. Then it is obvious that i (as proposer) can always get at least 1 − δjMj

in equilibrium. This proves that

(1) mi ≥ 1− δjMj .

Now examine Mj . Suppose that j wants to try and clinch an agreement today. She cannot
get more than 1 − δimi. On the other hand, if j makes an unacceptable offer, the max she
can get from tomorrow (discounted to today) is δjMj . It follows that

Mj ≤ max{1− δimi, δjMj}.
It is easy to see that Mj > 0 (why?). Therefore, the second term on the RHS above cannot
be the one that attains the max. Consequently,

(2) Mj ≤ 1− δimi.

Combining (1) and (2), it is easy to see that

mi ≥ 1− δjMj ≥ 1− δj(1− δimi),

or

(3) mi ≥
1− δj

1− δiδj
.

Now combining (1) and (2) in a slightly different way and using the same logic,

Mj ≤ 1− δimi ≤ 1− δi(1− δjMj),

so that

Mj ≤
1− δi

1− δiδj
.

Flipping the indices i and j,

(4) Mi ≤
1− δj

1− δiδj
.

Combining (3) and (4), we conclude that

(5) mi = Mi =
1− δj

1− δiδj
.

�

We can now unpack this to figure out supporting strategies. Player 1 as proposer will always
propose the division (x∗, 1− x∗), where

x∗ =
1− δ2

1− δ1δ2
,

and accept any proposal that gives her at least δ1x
∗. Likewise, Player 1 as proposer will

always propose the division (1− y∗, y∗), where

y∗ =
1− δ1

1− δ1δ2
,

and accept any proposal that gives her at least δ2y
∗. If the two are equally patient with

common discount factor δ, then the proposer picks up 1/(1 + δ) and the responder picks up
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δ/(1 + δ). The difference arises from the first-mover advantage that the proposer has but in
any case will wash out as the discount factor converges to one.

4. More Than Two Players

Additional issues arise in Rubinstein bargaining when there are three players or more. Of
these, the most basic concerns issues of protocol : who proposes, who responds, etc. Two
standard examples:

1. First rejector of going proposal proposes next.

2. New proposer drawn at random

We can also create a general class of protocols that encompass these two.

In what follows we abstract from questions of heterogeneous patience; assume that everyone
has the same discount factor δ. As before, there is a cake of unit size to divide.

4.1. Equilibrium in Stationary Strategies. A stationary strategy (sometimes called a
Markovian strategy) calls upon the agent to take the same action always when it is her turn
to propose or respond, provided that the ambient situation is the same.1 Neither history nor
calendar time matters. [Of course, when we require such strategy profiles to be equilibria,
they must be full-blown equilibria in the class of all strategies, stationary or not.

A proposal now is a vector x ∈ IRn such that
∑

i xi ≤ 1.

Focus on responses. With stationary strategy profiles they must look like this: say yes if the
amount given to you, person i, is above some threshold mi, otherwise say no. Actually it is a
bit more complicated than that because if the proposal gives you more (than your threshold)
but gives some responder who responds after you less (than her threshold), you don’t want to
accept because you want to grab the initiative, at least in the rejector-proposes protocol. So
the technically correct description of a response vector is a collection (m∗

1, . . . m
∗
n) such that

each responder i says yes if the proposal gives x∗
j ≥ mj to every responder j who responds

after i and says no if the proposal gives x∗
j < mj to some responder j who comes after i.2

Now go back to proposals made by i. He will simply try to get

zi ≡ 1−
∑
j 6=i

mj ,

assuming this is nonnegative, and zero otherwise.

1In the present context, “the ambient situation is the same” simply means that she is responding to the
same proposal.

2Strictly speaking, i is perfectly allowed to randomize if xi = mi but we simply presume that he will
accept then. It is easy to see that if he rejects with some probability in the indifference case then this cannot
form part of any stationary equilibrium, because the corresponding proposer will not have a well-defined best
response.
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Variant 1. First rejector proposes. By rejecting i takes the initiative and gets zi tomorrow,
valued today at δzi. Therefore

(6) mi = δzi = δ(1−
∑
j 6=i

mj)

It is easy to check (do so!) that there is a unique solution to (6) with mi = mj ≡ m∗ for all
i and j, so

m∗ =
δ

1 + (n− 1)δ
,

and indeed, this is what each responder gets. The proposer picks up the remainder, which is
easily seen to be

1
1 + (n− 1)δ

.

All of this goes to equal division as δ → 1.

Variant 2. Random choice of proposers. If i rejects a proposal, two things can happen. One
(with probability 1/n), i gets the initiative and therefore (1 −

∑
j 6=i mj) tomorrow. Two

(with probability (n−1)/n), i remains a responder and then gets mi tomorrow. Discounting
and then taking expected values, we must conclude that Therefore

(7) mi = δ

 1
n

(1−
∑
j 6=i

mj) +
n− 1

n
mi

 .

Again, it is easy to see that (please verify) that there is a unique solution to (7) with mi =
mj ≡ m̂ for all i and j, so

m̂ =
δ

n
,

and this is what each responder gets. [The proposer picks up the remainder as in Variant 1.]

Notice that m̂ in Variant 2 is smaller than m∗ in Variant 1 (check this). This is as it should
be, because in Variant 1 the rejector has “more power”. Notice, however, that even in this
case the outcome goes to equal division as the discount factor converges to one.

4.2. Other Equilibria. Unfortunately, the uniqueness result for two-person Rubinstein bar-
gaining no longer survives with three or more players. The argument, due to Herrero and
Shaked (see Herrero (1985)) is good practice and it is worth writing down. We do so for the
rejector-proposes protocol.

Following the language of repeated games, let us try to write down a penal code. “Phase i”
is described as follows:

Player i asks for the entire cake, giving zero to all other players.

Now “connect” these phases as follows. Notice that the description above can also apply in
situations in which player i has deviated and is now asking for the whole cake. This looks
like phase i but it isn’t a “valid” phase, it is something that needs to be punished. So we
will develop the notion of a “valid” and “invalid” phases recursively.



5

First the recursive strategy specification, then the initial condition:

[A] Suppose that we are currently in a valid phase i. Then all responders are required to
accept the proposal.

[B] Otherwise, the phase is invalid. In this case, the responder k (among the remaining
responders) is required to reject the proposal if and only of she gets no more than 1/(n− 1),
and start phase k.

[C] A phase is valid if it is a going reaction to an invalid phase as specified by [A] or [B], or
if it is the phase specified at the very start of the game. Otherwise, it is invalid.

And the initial condition: begin with the specification that some (valid) phase i is started
up.

This entire construction yields a penal code which we shall employ to support various out-
comes as equilibria. Let us check conditions under which it is an equilibrium. We only need to
check the unprofitability of one-shot deviations. Consider [A]. If a responder does not accept
in a valid phase, then by [C], he starts an invalid phase and using [B], he will subsequently
get 0. So it is optimal to accept in [A], given that everyone else follows the prescription.

Now for [B]. Consider a responder who gets more than 1/(n− 1). Suppose she rejects. Then
by [C], she starts an invalid phase and will surely get 0 if we follow the prescription thereafter.
If the responder gets less than 1/(n− 1), then by accepting she can get no more than what
she is being currently offered.3 By rejecting, she gets 1 after a lag discounted by δ. So she
rejects whenever

(8) δ >
1

n− 1
.

Note the crucial important point about this construction: it only works when n ≥ 3, because
the inequality (8) must hold.

This set of punishments is so strong (because you use it to give any deviator 0) that it can
be used to support all sorts of equilibria, including those that are inefficient. The formalities
of this are left to you.

3For if she accepts, the proposal will either be implemented or someone else is asked to reject, and she will
get 0.


