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1. I

The huge multiplicity of equilibria given by the folk theorem motivates an obvious question:
why would players “deliberately” select on equilibria with bad outcomes if “better” equilibria
are available? A simple answer to this is that individual rationality (along with the common
knowledge of the game and strategic beliefs) does not take us further than equilibrium behav-
ior. In particular, it does not permit us to choose among equilibria on the basis of collective
rationality.

At the same time, we do study repeated games in the hope that it will be able to explain
“collusive” outcomes, in which the players can get high payoffs. Thus one justification of
the bad equilibria is that we are not really interested in them per se, but only insofar as they
support the good outcomes. Thus we, the players, might have a conversation about how to
proceed and then turn off all conversation, so that when a deviation has to be punished we go
ahead and punish, on the expectation that others will too.

But what if we cannot turn off the conversation? Then after a deviation the past is sunk. Might
we not have a collective incentive to ignore the deviation and simply start cooperating all over
again? We might, but in that case cooperation may not be sustainable to start with! This leads
us into the realm of equilibria that are “immune to collective rethinking”, or renegotiation-proof.

The following instance illustrates the main point:

Example. Consider the 3 × 3 two-player game shown below:

A2 B2 C2
A1 4, 4 0, 5 0, 0
B1 5, 0 3, 3 0, 0
C1 0, 0 0, 0 1, 1

Think of repeating this game once. We know that if β is high enough there is a SGP equilibrium
in which we play (A1,A2) today, following it up with (B1,B2) in the case of compliance and
(C1,C2) in the case of noncompliance. This is a subgame perfect equilibrium and its equilibrium
payoff is the very best one among all equilibria.

Is that good enough grounds to settle on this equilibrium? Maybe, if players can talk just once
at the start of the game and not thereafter? But what if they can talk at the start of the repetition
as well? Is it then reasonable, using the same collective rationality postulate that started us off
on cooperation in the first place, to assume that (C1,C2) will ever be played? Probably not.

But now notice the paradox: if it is not reasonable, then we destroy the even more cooperative
outcome (A1,A2) in the first period! It cannot be sustained any longer.

Renegotiation-proof equilibria are a way to formalize the idea that players can not just talk
and cooperate, they can do so repeatedly as the game wears on. As we have just seen, such
equilibria do not generally give you the best SGP outcome.
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First think about a definition for finitely repeated games.

2. A D  F R G

We shall use the familiar device of supporting payoffs to define the concept; it can easily be
translated into a definition using strategies (see Bernheim and Ray (1989) for such a definition).
We will also restrict ourselves to two-player games from this point on: while the definition of
renegotiation proof equilibrium applies, without alterations, to n-player situations, issues of
coalitional deviations also become important in such contexts.

Consider a game that is repeated T times, i.e., played T+1 times. Use the notationω(A) to denote
the weak Pareto frontier of some set A: i.e., ω(A) ≡ {p ∈ A| there is no p′ ∈ A such that p′ � p}.

Define S0 to be the set of one-shot equilibrium payoffs, and let R0
≡ ω(S0). This is the set of

renegotiation-proof payoffs in the one-shot game. There isn’t much action here: simply pick
the weak Pareto-frontier.1

Inductively, suppose that we have defined the set Rt as the set of renegotiation-proof payoffs
in the t-repeated game. To figure out the Rt+1, first consider the set of all payoffs St+1 that can
be supported with Rt,

St+1
≡ φ(Rt),

and then define the set of renegotiation-proof payoffs for the (t + 1)-repeated game as

Rt+1
≡ ω(St+1).

This completes the recursive definition.

The structure of the sets {Rt
} can be quite interesting, as the following example demonstrates.

3. A E

Consider a lender and borrower. The lender lends to the borrower at some fixed rate of interest
r > 0. There are two projects A and B that the borrower can invest in, yielding net rates of
return to the borrower of α > β > 0. These projects are a matter of complete indifference to the
lender, but in any case the lender can dictate the choice of project. At any date, there is a fixed
exogenous penalty π for a default of any size on an ongoing loan. Finally, assume that there
is an upper bound on the “bad” project B, given by a loan size of L̄. On project A, assume no
such bound (or a sufficiently larger bound, as the computations below will make clear).

Begin with the stage game. It is clear that there are only two equilibria. To find them, define

`0 ≡
π

1 + r
.

Now observe that all loan sizes below `0 will be repaid by the borrower in the stage game.
Consequently,

S0 = {(r`0, α`0), (r`0, β`0)},

1We use the weak Pareto frontier as our criterion in keeping with the idea that every player must strictly wish
to renegotiate. This point is brought out clearly in the example below.
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and
R0 = ω(S0) = V0.

Now turn to the set of all payoffs that can be supported in the game repeated once. (Forget
about discounting for this example.) It should then be clear that apart from `0, an extra amount
of loan can be sustained without fear of default, simply by the lender (credibly) threatening to
revert to the bad project in the last period in the case of default in the first period. The (present
value) loss to the borrower in that case is given by (α − β)`0, so that the maximum loan size in
the first period of the two-period game is given by

`1 ≡ `0 +
(α − β)`0

1 + r
.

E. If `1 ≤ L̄, carefully find the value of S1, and then show that

R1 = {(r`1, α`1), (r`1, β`1)}.

Recursively, as long as `t ≤ L̄, we may define in exactly the same way,

`t+1 ≡ `t +
(α − β)`t

1 + r
,

and then deduce that
Rt+1 = {(r`t+1, α`t+1), (r`t+1, β`t+1)},

provided that `t+1 ≤ L̄. This recursion continues until we reach first date T (as we certainly
must) such that

`T > L̄.
At this date, check that RT must be the singleton set given by

RT = {(r`T, α`T)}.

If the finite-horizon game has a horizon longer than this, the entire process must build up
again from this point! The idea is that in the game repeated T periods, there is exactly one
renegotiation proof payoff. Consequently, in the game repeated T + 1 times, all that can be
sustained at the initial date is the original loan size `0! For longer games, the cyclical path
builds itself up again, just as outlined above.

It is therefore possible for renegotiation-proof equilibria to exhibit “periodic breakdowns” of
cooperation on the equilibrium path, and indeed, to select such paths as the unique outcome.
This illustrates well the consequences of applying the same selection criteria (in this case,
Pareto-optimality) to all subgames as well as on the initial equilibrium path.

4. I R G

Now we turn to a definition of the concept for infintely repeated games.2 Say that a strategy
profile σ is weakly renegotiation proof (WRP) if it is a SGPE and for all pairs of histories (ht, h′s)
(where s = t is allowed), the payoff vectors F(a(σ, ht)) and F(a(σ, h′s)) are mutually Pareto-
incomparable.

2The same definition appears in Bernheim and ray 91989) and Farrell and Maskin (1989).
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This is easily seen to imply the following feature. Let P(σ) be the set of all payoff vectors
generated by σ, following all histories. Then P(σ) is self-generating, and ω(P(σ)) = P(σ).

[Prove this.]

The following observations are relevant.

[1] We could alternatively have taken the feature in the paragraph above to be the defining
feature of a WRP set. A WRP set need not be associated with a single equilibrium: it is more
like a set of payoffs that has a self-referential consistency property.

[2] This self-referentiality leads to conceptual problems. Observe that the singleton set consist-
ing of the payoff vector generated by any Nash equilibrium of the stage game is WRP. WRP
sets are by no means unique.

E. Consider the Prisoner’s Dilemma given by

2, 2 0, 3
3, 0 1, 1∗

Observe that (as discussed) {(1, 1)} is a WRP set. By appropriately choosing the discount factor,
find another equilibrium that is WRP, and nowhere makes use of the mutual defection cell.
Describe precisely the WRP set that it generates.

[3] Thus there is a tension in the “choice” of WRP sets: what is the appropriate theory of the
game that players should adopt? One obvious answer is to choose the “best” WRP set: one
that is not Pareto-dominated by any other point on any other WRP set. This is a requirement
of external consistency, as you can tell. The WRP set itself is not just the only criterion that is
being used, but a comparison across WRP sets is being made.

Unfortunately, the external consistency requirement is not always met. There may not exist
any WRP set with the required property described in the preceding paragraph. The issue of
external consistency then becomes problematic. This is as far as we need to go in this course:
see Bernheim and Ray (1989) for a detailed discussion of this and related points.

[4] However, even on the grounds of internal consistency alone, WRP sets are suspect. To see
this, consider the following example:

8, 8 0, 0 0, 0
0, 0 0, 0 1, 2∗

0, 0 2, 1∗ 0, 0

Consider the set of payoffs W ≡ {(1, 2), (2, 1)}. Check that this is indeed WRP.

Now suppose that players indeed hold to W as a theory of how the game will be played from
“tomorrow” onwards. In that case, observe that W supports more than W itself: in stages, we
see that it covers all the combinations in which (1, 2) and (2, 1) can be played, at the very least.
This covers the line segment joining (1, 2) to (2, 1); at least, all the rational convex combinations
(weighted by the discount factor) of the two. Thus points approximately halfway between the
two extremes become available. But now observe that with such a set, it is possible to sustain
the collusive payoff (8, 8) in the first period. This gets us into trouble, because such payoffs
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Pareto-dominate segments of W, which will be eliminated as we finally apply the mapω. Thus
a truly internally consistent renegotiation-proof set may lie pretty far away from W. For more
on these issues, see Ray (1994).

With these qualifications in mind, let us return to the study of WRP equilibria. First, a
definition. Say that a payoff vector v can be sustained as a WRP payoff if there is some WRP
equilibrium σ such that v ∈ P(σ).

Following Farrell and Maskin (1989), it is possible under some assumptions to obtain a char-
acterization of WRP payoffs. Let F∗∗ be the convex hull of the set of all feasible, strictly
individually rational payoffs; i.e.,

F∗∗ ≡ {v ∈ F|v� 0}.

In what follows, we shall assume that for every v ∈ F∗∗, there is an action vector a ∈ A such that f (a) = v.
Recall that for the folk theorem, we also made an assumption like this at the beginning, and then
argued after the theorem that such an assumption can be dropped costlessly. This assumption
cannot be dropped with equal ease. I will return to this point below.

T 1. Assume (G.2) and the assumption in the previous paragraph. Let v ∈ F∗∗. Suppose that
there are action vectors ai

∈ A, for i = 1, 2 such that

di(ai) < vi for i = 1, 2,

f j(ai) ≥ v j for j , i.(1)

Then v is a WRP payoff for all β sufficiently close to unity.

Moreover, if v ∈ F∗∗ is a WRP payoff for any β, then there exist ai
∈ A, for i = 1, 2 such that

di(ai) ≤ vi for i = 1, 2,

f j(ai) ≥ v j for j , i.(2)

Proof. Sufficiency. Let a be an action vector that attains the payoff v. This is going to be the
initial path, while the action vectors a1 and a2 are going to serve as punishments.

Begin by observing that there exists β1
∈ (0, 1) such that if β ∈ (β1, 1),

(3) (1 − β)M + βdi(ai) < vi,

for i = 1, 2, where M, it will be recalled, is the value of the maximum absolute payoff in the
stage game. Because (3) is strict, there exists a vector p such that for each i,

(4) pi > di(ai)

and

(5) (1 − β)M + βpi < vi

for all β ∈ (β1, 1).

The idea, now, will be to replicate the value of pi by playing ai T times (where T is an integer
to be determined), and then go back to the normal phase of playing a. Thus what we want is

(6) pi = (1 − βT) fi(ai) + βTvi
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for some integer T.

To go about this, let us substitute the RHS of (6) into the inequalities (3) and (4), and see what
we need. Note that once we settle on a T, (4) is not going to be a problem for β close enough
to unity, because vi > di(ai) by assumption. For inequality (5) to hold, it must be the case that

(1 − β)M + β[(1 − βT) fi(ai) + βTvi] < vi

must hold for all β close enough to unity. Note that the LHS of the expression above equals vi
at β = 1. So for the desired result, we need the derivative of the LHS with respect to β to be
positive, evaluated at β = 1. Taking the derivative, we obtain the expression

M + fi(ai)[1 − (T + 1)βT] + (T + 1)βTvi,

and evaluating this at β = 1, we get

−M − fi(ai)T + (T + 1)vi

so that the required condition is

(7) (T + 1)vi > fi(ai)T +M.

This can be guaranteed for large T, because vi > di(ai) ≥ fi(ai). Choose T satisfying (7). Then
there is some β∗ ∈ (β1, 1) such that if β ∈ (β∗, 1), conditions (4), (5) and (6) all hold.

Now define three paths as follows:

a0
≡ (a, a, a, . . .), and

ai = (ai, ai, . . . , ai) T times
= (a, a, a, . . .) thereafter,

for i = 1, 2.

We claim that σ(a0, a1, a2) is a WRP equilibrium. To establish this, first let’s check for subgame
perfection.

Deviations from a0. If i deviates from a0, he gets at most

(1 − β)M + βpi,

by construction. By (5), this is less than vi.

Deviations from ai. Suppose, first, that i deviates. The most tempting deviation is in the first
period, by the construction of the punishment path. In this case, the total payoff is

(1 − β)di(ai) + βpi.

Using (4), this is less than pi, so that deviations by i from ai are not profitable.

Likewise, j will not deviate from ai, because by the assumption that f j(ai) ≥ v j and the nature
of the path ai, (5) applies right away to prevent deviations (check this).

To complete the proof of sufficiency, all we have to do is check that no two payoff vectors
generated by σ(a0, a1, a2) ever Pareto-dominate each other. This follows directly from the
properties of a1 and a2 relative to the payoff vector v.
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Remark on the assumption. As in the folk theorem, we can relax the assumption that the
payoff vector v is achieved by a pure action. The problem that we now have is to make
sure that the various actions which we shall use to intertemporally simulate v do not end up
Pareto-dominating each other, or indeed, Pareto-dominating the payoffs. This is not trivial.
For an indication of how this task is accomplished in the case where mixed strategies can be
observed, see Farrell and Maskin [1989].

Necessity. Suppose that v ∈ F∗∗ is a WRP payoff; i.e., v ∈ P(σ) for some WRP equilibrium σ. We
will prove that an action pair a1 satisfying the required conditions (2) exists. [The proof for a2

is completely analogous.]

E. Assume (G.2). Prove that if v can be supported as a WRP equilibrium, then there
exists a WRP σ such that P(σ) is compact. [The idea is, as usual, to use a sequential compactness
argument. In case you have problems, look at Farrell and Maskin [1989], Lemma 2, 356–357.]

By the exercise, we may assume without loss of generality that σ has a worst continuation
equilibrium for player 1. Choose, among these, the best for player 2. Let a1 be the first period
action vector on this worst equilibrium path, and let σ1 denote the continuation equilibrium
starting the period after a1. Finally, let v∗ be the payoff vector when the worst punishment
begins.

We will show that a1 satisfies all the needed conditions.

Clearly, v∗1 ≤ v1. We claim that v∗2 ≥ v2. Suppose not. Then v∗2 < v2. If v∗1 < v1 as well, we have a
contradiction to WRP. So this must mean that v∗1 = v1. But in this case we contradict the choice
of the worst equilibrium (it has to maximize player 2’s payoff in the class of all equilibria that
are worst for player 1). So v∗2 ≥ v2, as claimed.

Our next claim is that f2(a1) ≥ v∗2. Suppose not. Then f2(a1) < v∗2. But then F2(σ1) > v∗2, because
σ1 is the continuation equilibrium. By the WRP requirement, it follows that F1(σ1) ≤ v∗1. But
this contradicts, again, our choice of v∗.

We complete the proof by showing that d1(a1) ≤ v∗1 ≤ v1. As noted, v∗1 ≤ v1 by construction.
To see that d1(a1) ≤ v∗1, observe that if this were not the case, player 1 could deviate from
his punishment by getting d1(a1) in the first period, followed by no less than v∗1. Therefore
d1(a1) ≤ v∗1 ≤ v1, and we are done. �


