
More On Extensive Form Games
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Rosenthal’s Centipede

Continue the study of backward induction in the centipede.

Deviations as “trembles”. Then can maintain rationality assump-
tion on deviation.

Irrational Types. Suppose with probability ε each player is a passer;
otherwise rational.

Define a stage to be an epoch in which players 1 and 2 move once
each.
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A Trivial Observation. If T > (1/ε), rational player 1 will pass in
the first stage.

A More Subtle Observation. As long as T ≥ 2, rational player 1
never exits for sure at stage 1.

Full solution of equilibria uses indifference condition for taking/passing
and Bayes’ Rule.
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Strategies. Passing type passes for sure. Rational player 1 passes
w.p. at at stage t and rational player 2 passes w.p. bt at stage t.

Beliefs. At stage t, 2 believes that 1 is a passer w.p. αt and 1
believes that 2 is a passer w.p. βt.

β1 = ε, and for all t ≥ 1

βt+1 =
βt

βt + (1− βt)bt
≥ βt.

α0 = ε, and for all t ≥ 0

αt+1 =
αt

αt + (1− αt)at+1
≥ αt.

[Bayes’ Rule]
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Payoffs.
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Rosenthal’s Centipede

At stage t, if 1 takes: 1 gets 2t and 2 gets 2t− 2.

If 2 takes: 1 gets 2t− 1 and 2 gets 2t + 1.
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Preliminary Steps.

If bt = 1, then at = 1. (Obvious.)

If at+1 = 1, then bt = 1. (Obvious again.)

Combine. Once at falls below 1, all subsequent as’s and bs’s fall
below 1.

In this interior phase, taking is always optimal.

But for all t ≤ T − 1, at > 0 and bt > 0. So in interior phase,
indifference condition holds.
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Review: If 1 takes: 1 gets 2t and 2 gets 2t− 2.

If 2 takes: 1 gets 2t− 1 and 2 gets 2t + 1.

So in the interior phase, for player 1:

2t = (2t− 1)(1− βt)(1− bt) + [1− (1− βt)(1− bt)](2t + 2),

(1− βt)(1− bt) = 2/3

and for player 2:

2t + 1 = 2t(1− αt)(1− at) + [1− (1− αt)(1− at)](2t + 3),

(1− αt)(1− at) = 2/3

The passing probabilities have to steadily fall in the interior phase.
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Recap the four equations:

β1 = ε, and for all t ≥ 1

βt+1 =
βt

βt + (1− βt)bt
≥ βt.

α0 = ε, and for all t ≥ 0

αt+1 =
αt

αt + (1− αt)at+1
≥ αt.

(1− βt)(1− bt) = 2/3

(1− αt)(1− at) = 2/3

Theorem. If T is large enough, the interior phase must be preceded
by one in which both players pass for sure.
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Summary

Backward induction (and so subgame perfection) is a problematic
argument.

But many situations where it makes sense: e.g., assessing credibil-
ity.

Move on to other aspects of subgame perfection, and then appli-
cations.
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An Infinite Extensive Form

Not fully general, but captures a lot.

Ambient action sets for individual i: a sequence Ai(t), each com-
pact metric.

Action ai(t). Action profile a(t) ∈ A(t) ≡
�

i Ai(t).

A path is a sequence of action profiles a = {a(t)}.

Assume all a(t) commonly observed and remembered.

So for t ≥ 1, t-history may be identified with a finite sequence of
action profiles up to t− 1.
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Arbitrary singleton h(0) for 0-history.

H(t) set of all (feasible) t-histories, will be defined recursively.

For all i and t ≥ 0, a feasibility correspondence Ci(t, .) maps ele-
ments in H(t) to subsets of Ai(t). [Ci(0, h(0)) = Ai(0) ∀ i.]

[C.1] For each i and date t, Ci(t, .) is a nonempty-valued, continuous
correspondence.

H(0) just a singleton set. Recursively

H(t + 1) = {(h(t), a(t))|h(t) ∈ H(t) and ai(t) ∈ Ci(t, h(t)) for all i}.
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Feasible path has truncations (h(0),a(0), . . .a(t− 1))) ∈ H(t) for all
t ≥ 1.

Let H be the set of all feasible paths.

Can be viewed as subset of
�

t A(t).

Observation. Under [C.1], H is compact in the product topology.

Proof.�
t A(t) compact by Tychonoff. So prove H is closed.
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Payoff functions Fi : H 7→ R.

[F.1] For each i, Fi is a continuous function on H.

All-important discounting assumption. Illustrate with cake-eating.

Strategy σi = {σi(t, .)}: for all t ≥ 0 and h(t) ∈ H(t), σi(t, h(t)) ∈
Ci(t, h(t)).

Strategy profile is σ = {σi}.

Generates path a(σ), and more generally, a(σ, h(t)) for each h(t).
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Equilibrium

σ is a Nash equilibrium if for every i and σ′i,

Fi(a(σ)) ≥ Fi(a(σ−i, σ
′
i)).

And σ is a subgame perfect Nash equilibrium if for i and h(t) and
σ′i,

Fi(a(σ, h(t))) ≥ Fi(a(σ−i, σ
′
i, h(t))).
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Special Cases

Finite-Horizon Games. Horizon T .

Set Ai(t) to a singleton for all i and all t ≥ T .

Perfect Information.

At every t and h(t), at most one set Ci(t, h(t)) is not a singleton.

Repeated Games With Discounting.

Ai(t) = Ai for all t, and Ci(t, h(t)) = Ai for all h(t).

“One-period” utility fi :
�

j Aj 7→ R and discount factor δi ∈ (0, 1)
s.t.

Fi(a) = (1− δi)
∞X

t=0

δt
ifi(at).
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Games with Termination Threats.

E.g., A principal offers a contract at each date to an agent.

Agent can comply or deviate. If he complies, the relationship con-
tinues. If he deviates, the relationship is over.

Games Against Different Selves.

E.g., The Strotz model and its later descendants — such as hy-
perbolic discounting.

Games with State Variables.

E.g. Oil cartel.

State variable: going vector of oil stocks.

Actions: oil extraction, obviously affected by the stock.
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The One-Shot Deviation Principle.

Originally formulated by Blackwell (1965) for dynamic program-
ming.

Fix σ−i for all agents other than i.

Induces a “one-player game”.

σi is a perfect best response if for no σ′i and h(t) is

F (a(σ′, h(t))) > F (a(σ, h(t))),

where σ = (σi, σ−i) and σ′ = (σ′i, σ−i).

σa: strategy obtained by substituting the choice a at h(t).

σi is unimprovable for i if for no h(t) and corresponding σa
i is

Fi(a(σa, h(t))) > Fi(a(σ, h(t)))

where σa = (σa
i , σ−i).
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Theorem. Under [F.1], an unimprovable strategy must be a best
response.

Why [F.1]?

1-player game. At each node can choose a or b.

Get 1 if choose a i.o., otherwise get 0.

Consider strategy: choose b at every node. Unimprovable but
suboptimal.
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Proof of One-Shot Deviation Principle.

Suppose that σi is not a best response.

For some σ′i and h(t): Fi(a(σ′, h(t))) > F (a(σi, h(t))).

So there is ε > 0 and path a (coincides with h(t) up to t− 1) s.t.

Fi(a) ≥ Fi(a(σi, h(t))) + 2ε

By [F.1], ∃ integer M s.t. if any feasible path a′ shares the first
(M + t)-histories as a,

Fi(a′) ≥ Fi(a)− ε.

Combine:
Fi(a′) ≥ F (σ, h(t)) + ε.

Now complete the proof.
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Existence Questions in Infinite Games

Problem with the backward induction argument

Example [Hellwig, Leininger, Reny and Robson (1990)]: n = 2.

Player 1 chooses a1 from [−1, 1].

Then 2 chooses a2 from [−1, 2].

Player 1’s payoff function is a1 − a2.

Player 2’s payoff function is a1a2.

Obvious that 2’s strategy must be a selection from

C(a1) = {−1} if a1 < 0

= [−1, 2] if a1 = 0

= {2} if a1 > 0.
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So to guarantee existence, the selection must be chosen carefully.

But unclear how to make the selection (e.g. introduce dummy
player between 1 and 2).

The “Markovian” nature of backward induction may fail.

Example from the Strotz model [Peleg-Yaari (1973)]:

Four-period cake-eating: c(t), t = 0, 1, 2, 3.
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Four persons (or personalities) in charge . . . Payoffs:

f3(c) = c3

f2(c) = min{2c(2),
c(2) + 3

2
}+ c(3)

f1(c) = min{2c(1),
c(1) + 3

2
}+ c(3)

f0(c) = [c(0)c(1)c(2)]1/3 + c(1)

y(t) = stock of uneaten cake, so y(t + 1) = y(t)− c(t).
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f3(c) = c3

f2(c) = min{2c(2),
c(2) + 3

2
}+ c(3)

c(3) = y(3) for all y(3).

c2(y) = y for y ≤ 1

= 1 for y > 1.
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f1(c) = min{2c(1),
c(1) + 3

2
}+ c(3)

f0(c) = [c(0)c(1)c(2)]1/3 + c(1)

c1(y) = {y} for y < 3

= {1, 3} for y = 3

= {1} for y > 3.

Correspondence. Let selection attach probability p to choice of 1
when y(1) = 3.
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f0 = c(0)1/3 + 1 for 0 ≤ c(0) < y(0)− 3

= p[c(0)1/3 + 1] + 3(1− p) for c(0) = y(0)− 3

= y(0)− c(0) for y(0)− 3 < c(0) ≤ y(0).

If p < 1, no maximum whenever y(0) > 11.

But if p > 0 no maximum whenever 3 ≤ y(0) < 11!
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