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1. M

I describe an infinite extensive form which captures a large variety of economic situations.

The ambient action sets for individual i will be denoted by a sequence Ai(t), each a compact
metric space with generic action ai(t). Let a(t) be the action profile, belonging to the product
action set A(t). We assume that all action profiles are commonly observed and remembered.

The game starts at date 0. A path is a sequence of action profiles a = {a(t)}, such that each
a(t) ∈ A(t).

All paths won’t be feasible, as individual choices may be restricted by the history of the game
so far. This is what we turn to next.

A history at date t ≥ 1 (or a t-history) is a full description of all that has transpired in the past,
up to and including date t − 1. Obviously, a t-history may be identified with a finite sequence
of action profiles up to t − 1. To streamline the definitions, introduce an arbitrary singleton
h(0) which will serve as a (the) 0-history. Let H(t) be the set of all (feasible) t-histories, to be
defined recursively below.

For all i and t ≥ 0, there exists a feasibility correspondence Ci(t, .) that maps elements in H(t) to
subsets of Ai(t), to collections of feasible actions. By convention, Ci(0, h(0)) = Ai(0) for all i.

Now we can inductively define the set of all feasible t-histories. At date 0 H(0) is just a
singleton set. Recursively, if H(t) has already been defined, then the set of all t + 1-histories is
the collection

H(t + 1) = {(h(t), a(t))|h(t) ∈ H(t) and ai(t) ∈ Ci(t, h(t)) for all i}.

A feasible path is a sequence a of action profiles with “initial segments” that are feasible t-
histories for all t. Specifically, a is feasible if the truncations (h(0), a(0), . . . a(t)) ∈ H(t + 1) for all
t ≥ 0.1 Let H be the set of all feasible paths.

[C.1] For each i and date t, Ci(t, .) is a nonempty-valued, continuous correspondence.

Recall that H can be viewed as a subset of
�

t A(t). Endowed with the product topology, this
latter set is obviously compact. This allows us to establish

L 1. Under [C.1], H is compact in the product topology.

Proof. Simply prove that H is closed. A sequential argument is very easy to provide. Let ak be
a sequence of paths in H converging in the product topology (so pointwise) to some sequence
a ∈
�

t A(t). We must show that a ∈ H as well. Do so inductively. Suppose that for some t,
the truncation h(t) of a lies in H(t). (This is trivially true at t = 0.) Consider the corresponding

1Note that we need to slip in the arbitrary singleton h(0) to keep the notation consistent.
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truncations hk(t) (of ak) that converge pointwise to h(t). By definition, ak
i (t) ∈ Ci(t, hk

i (t) for every
k and i. Because Ci is continuous, this must be true at the pointwise limit as well. So a(t) has
the property that ai(t) ∈ Ci(t, hi(t) for every i, which means that the truncation h(t + 1) lies in
H(t + 1). This recursion proves that a is a feasible path. �

Note: to do this you dont’t need the full power of [C.1].

Finally, we define payoff functions Fi for each individual i, which are real-valued mappings
defined on feasible paths H. We assume

[F.1] For each i, Fi is a continuous function on H.

This is effectively the discounting assumption. Notice that the product topology is weak, so
the continuity assumption is correspondingly strong. As an example of a well-defined payoff
function which is not continuous, look at the cake-eating problem without discounting.

2. S  E

A strategy for player i is a specification of a feasible action conditional on every t-history.
More formally, a strategy σi is a collection {σi(t, .)} such that for every t ≥ 0 and h(t) ∈ H(t),
σi(t, h(t)) ∈ Ci(t, h(t)).

A strategy profile is a collection σ of strategies, one for each player. Such a profile generates a
feasible path a(σ). More generally, σ generates a path a(σ, h(t)) conditional on every t-history,
for t ≥ 0. In the latter case, the path obviously coincides with the t-history in question up to
date t − 1.

A strategy profile σ is a Nash equilibrium if for every player i and every strategy σ′i ,

Fi(a(σ)) ≥ Fi(a(σ−i, σ
′

i )).

And σ is a subgame perfect Nash equilibrium (SGPE) if for every history h(t), every player i, and
every alternative strategy σ′i ,

Fi(a(σ, h(t))) ≥ Fi(a(σ−i, σ
′

i , h(t))).

3. S C

3.1. Finite-Horizon Games. If the horizon is T, simply set Ai(t) equal to a singleton for all i
and all t ≥ T.

3.2. Games of Perfect Information. At every date t and for every t-history h(t), at most one
set Ci(t, h(t)) is not a singleton. Note: it is possible that different players can move at the same
date, depending on the particular history.
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3.3. Repeated Games With Discounting. Ai(t) = Ai for all t, and Ci(t, h(t)) = Ai for every
t-history h(t). Moreover, for every i there is a one-period utility indicator fi :

�
j A j 7→ R and

a discount factor δi ∈ (0, 1) such that

Fi(a) = (1 − δi)
∞∑

t=0

δt
i fi(at).

3.4. Games with Termination Threats. A principal offers a contract at each date to an agent,
who can comply or deviate. If he complies, the relationship continues. If he deviates, the
relationship is over.

3.5. Games Against Different Selves. The Strotz model and its later descendants — such as
hyperbolic discounting — can be modelled as special cases of the structure here.

3.6. Games with State Variables. Consider an oil cartel selling oil on the world market. The
state variable is the existing vector of oil stocks. The set of actions at each date is the extent of
oil extraction, which is obviously affected by the size of the stock. Build payoff functions as in
Cournot oligopoly.

4. T O-S D P

The one-shot deviation principle is fundamental to the theory of extensive games. It was
originally formulated by David Blackwell (1965) in the context of dynamic programming. As
the strategy of other players induces a normal maximization problem for any one player, we
can formulate the principle in the context of a single-person decision tree.

Fix a strategy σ−i for all agents other than i. This induces a “single player game” with exactly
the same notation as above, in which all nonsingleton feasible sets are controlled by i. In
what follows, we consider this single-player game, which may be viewed as an optimization
problem.

A strategy σi is a perfect best response if there is no strategy σ′i and t-history h(t) such that

F(a(σ′, h(t))) > F(a(σ, h(t))),

where σ = (σi, σ−i) and σ′ = (σ′i , σ−i).

For any strategy σ, t-history h(t), and any action a ∈ Ci(t, h(t)), use the notation σa to denote the
strategy obtained by simply substituting the choice a at h(t), instead of the action prescribed
there by σ, and leaving all else unchanged. A strategy σi is unimprovable for i if there is no
t-history h(t) and corresponding σa

i such that Fi(a(σa, h(t))) > Fi(a(σ, h(t))), where σa = (σa
i , σ−i).

Observe that σa
i is a special strategy, differing as it does from σi by only “a one-shot deviation” at

the t-history x. It is therefore obvious that an optimal strategy is unimprovable. The converse
is what we’re after:

T 1. Under [F.1], an unimprovable strategy must be a best response.
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To see why [F.1] is needed, consider the following (rather silly, but perfectly legitimate) one-
person game, with an infinite number of nodes. At each node the person can choose a or b.
If she chooses a infinitely many times, she gets a payoff of 1, otherwise she gets a payoff of
0. Consider the strategy in which the person chooses b each time she moves. This strategy is
sub-optimal, but there is no one-shot profitable deviation from it.

Proof of Theorem 1. Suppose that σi is not a best response. Then there exists σ′i and t-history
h(t) such that Fi(a(σ′, h(t))) > F(a(σi, h(t))). This is equivalent to the following assertion: there
is a feasible path a which coincides with h(t) up to date t − 1 such that

Fi(a) ≥ Fi(a(σi, h(t))) + 2ε

for some ε > 0 Now using [C.1], choose an integer M such that if any feasible path a′ shares
the first (M + t)-histories as a (but is free to be quite different thereafter),

Fi(a′) ≥ Fi(a) − ε.

For all such paths a′, it follows from the two inequalities above that

Fi(a′) ≥ F(σ, h(t)) + ε.

In particular, this means that a finite number M of one-shot deviations, starting at the t-history
h(t), with σ applied everywhere else, is enough to generate a payoff improvement for i.

But then at least one of these one-shot deviations, applied alone, must yield a payoff improve-
ment at (at least) one of the s-histories h(s), for s = {t, . . . , t + N}. This proves that if σi is not a
best response, it must be improvable. �

5. E Q

The backward induction argument runs into different sorts of problems in infinite models.
This happens even if the horizon is finite.

This example is from Hellwig, Leininger, Reny and Robson (1990). Assume there are two
players, 1 and 2, moving sequentially. Player 1 chooses a1 from the set [−1, 1], then player 2
chooses a2 from the set [−1, 2]. Player 1’s payoff function is a1 − a2. Player 2’s payoff function
is a1a2.

Proceeding by backward induction, it is obvious that 2’s strategy must be a selection from the
correspondence

C(a1) = {−1} if a1 < 0
= [−1, 2] if a1 = 0
= {2} if a1 > 0.

But now notice that most selections from C will make things difficult for player 1. For instance,
the strategy selection that selects 2 at the “jump” will leave player 1 with no best response!
Indeed, the only selection that does leave player 1 with a best response is the one that selects
−1 at the jump. Then player 1 has a well-defined best response.

So this selection has to be done carefully if existence needs to be guaranteed. But just how
is the selection to be made? One possibility is that we do it to make sure that the immediate
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predecessor in the sequential moves game is put in the best possible position, then select again
and so forth. But this is problematic: just introduce a dummy player in the above example
who moves in between.

On another matter, the selection may have to be contingent on the full history, so that no
Markovian equilibrium might exist even when the underlying model is Markovian. The most
definite instance of this is the Peleg-Yaari example (1973), done in the context of the Strotz
model of changing tastes (1956). The problem is simple: there are four periods over which
to eat a cake — c(t), t = 0, 1, 2, 3 — and four persons (or personalities) in charge of the four
consumptions. Let y(t) be the stock of uneaten cake at the start of date t; then y(t+1) = y(t)−c(t).
Let

f3(c) = c3

f2(c) = min{2c(2),
c(2) + 3

2
} + c(3)

f1(c) = min{2c(1),
c(1) + 3

2
} + c(3)

f0(c) = [c(0)c(1)c(2)]1/3 + c(1)

Try backward induction. Then the last person (3) eats of all of the cake. Person 2 will eat
all the cake up to 1 unit and bequeath any excess, so his consumption strategy is unique and
conditioned only on y(2); it is

c2(y) = y for y ≤ 1
= 1 for y > 1.

Now consider 1. She does not care about 2’s consumption, so it is easy to see that she will
consume everything until y(1) = 3 after which she will consume 1 and bequeath the excess.
Her optimal correspondence is as follows:

c1(y) = {y} for y < 3
= {1, 3} for y = 3
= {1} for y > 3.

Now if player 0 is allowed to choose from this correspondence (as in the previous example), he
will still have a maximum for every initial condition, but the selection will vary with the player’s
initial condition. To see this, note that if the selection ascribes invariant probability p to the
choice of 1 when y(1) = 3, then

f0 = c(0)1/3 + 1 for 0 ≤ c(0) < y(0) − 3

= p[c(0)1/3 + 1] + 3(1 − p) for c(0) = y(0) − 3
= y(0) − c(0) for y(0) − 3 < c(0) ≤ y(0).

If p < 1, this function fails to reach a maximum whenever y(0) > 11. But if p > 0 this function
fails to reach a maximum whenever 3 ≤ y(0) < 11!
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So the conditioning has to be more subtle. It can be shown — see Fudenberg and Levine (1983),
Harris (1985) and Hellwig and Leininger (1988) for different cases and levels of generality —
that perfect information games nonetheless admit equilibria in history-dependent strategies.
Bernheim and Ray (1986) show that Markov equilibria can be obtained if one allows for “small”
degrees of uncertainty in the transmission of endowments. By suitable truncation arguments,
these arguments apply also to the infinite horizon.


