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1. P

A repeated game with common discount factor is characterized by the following additional con-
straints on the infinite extensive form introduced earlier: Ai(t) = Ai for all t, and Ci(t, h(t)) = Ai
for every t-history h(t). Moreover, for every i there is a one-period utility indicator fi :

�
j A j 7→

R and a (common) discount factor δ ∈ (0, 1) such that

Fi(a) = (1 − δ)
∞∑

t=0

δt fi(a(t)).

for every path a.

The corresponding one-shot or stage game is denoted by G =
(
{Ai}

n
i=1, { fi}

n
i=1

)
. The usual inter-

pretation is that Ai is a set of pure actions.1

The set of feasible payoff vectors of the stage game G is given by the set

F ≡ {p ∈ Rn
| f (a) = p for some a ∈ A}.

Let F∗ be the convex hull of the set of feasible payoffs. It should be clear that any normalized
payoff in the repeated game must lie in this set.

In what follows, assume

[G.1] Each Ai is compact metric, and fi : A→ R is continuous for all i.

[G.1],together with δ ∈ (0, 1), implies that [C.1] and [F.1] are satisfied.

We also assume

[G.2] The stage game G has a one-shot Nash equilibrium in pure strategies.

Strategies and (perfect) equilibrium have already been defined for the infinite extensive form,
and their restrictions to this special case form the corresponding definition for repeated games.

2. E: T R P’ D

C2 D2
C1 2, 2 0, 3
D1 3, 0 1, 1

Repeat this.

1There is formally no loss in interpreting Ai to be a set of mixed strategies. But there are conceptual problems
with this, as it requires that the strategies themselves (and not their realizations) be observed by all players.
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O 1. The only SGPE in a finitely repeated PD is “defect forever”.

How general is this observation? Well, it works for any game in which the stage Nash
equilibrium is unique, such as the Cournot oligopoly.

What if there is more than one equilibrium in the stage game?

Example. Variant of the PD

C2 D2 E2
C1 5, 5 0, 0 0, 6
D1 0, 0 4, 4 0, 1
E3 6, 0 1, 0 1, 1

Let T = 1; i.e., game is played at periods 0 and 1. Consider the strategy for player i:

Start with Ci.

Next, if both players have played C in period 0, play Di in period 1.

Otherwise, play Ei in period 1.

Claim: if discount factor is no less than 1/3, these strategies form a SGPE.

The subgame strategies generate Nash equilibria. So all we have to do is check deviations
in period 0. Given the opponent’s strategy as described, if player i plays according to her
prescribed strategy she gets 5+ δ4. If she misbehaves, the best she can get is 6+ δ. The former
is better than the latter if δ ≥ 1/3.

Calculus of cooperation and punishment, constrained by the requirement that the punishment
has to be credible.

Finitely repeated games can therefore take us in interesting directions provided we are willing
to rely on multiple stage equilibria.

Example. Prisoner’s Dilemma again, this time infinitely repeated.

C2 D2
C1 2, 2 0, 3
D1 3, 0 1, 1

Various strategy profiles possible.

Cooperate forever: start with Ci, and set σi(h(t)) = Ci for all conceivable t-histories.

Defect forever: start with Di, and set σi(h(t)) = Di for all conceivable t-histories.

Grim trigger: Start with Ci, thereafter σi(h(t)) = Ci if and only if every opponent entry in h(t) is a
“C j”.

Modified grim trigger: Start with Ci, thereafter σi(h(t)) = Ci if and only if every entry (mine or
the opponent’s) in h(t) is a “C”.
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Tit for tat: Start with Ci, thereafter σi(h(t)) = xi, where x has the same letter as the opponent’s
last action under h(t).

Consider the modified grim trigger strategy: Start with Ci, thereafter σi(h(t)) = Ci if and only
if every entry in h(t) is a “C”.

Claim: if discount factor is no less than 1/2, the modified grim trigger profile is a SGPE.

Two kinds of histories to consider:

1. Histories in which nothing but C has been played in the past (this includes the starting
point).

2. Everything else.

In the second case, we induce the infinite repetition of the one-shot equilibrium which is
subgame perfect.

So all that ’s left is the first case. In that case, by complying you get 2/(1 − δ). By disobeying,
the best you can get is 3 + δ/(1 − δ). If δ ≥ 1/2, the former is no smaller than the latter.

Examine perfection of the grim trigger, the modified trigger with limited punishments, tit-for-
tat.

3. E P

The set of equilibrium payoffs of a repeated game is often a simpler object to deal with than
the strategies themselves. There are also interesting properties of this set that are related to
the functional equation of dynamic programming.

Recall that F∗ be the convex hull of the set of feasible payoffs. It should be clear that any
normalized payoff in the repeated game must lie in this set. Define the class of sets F by
collecting all nonempty subsets of F∗. Formally,

F ≡ {E|E , ∅ and E ⊆ F∗}.

For any action profile a and any i, define di(a) = max fi(a′i , a−i) over all a′i ∈ Ai. Pick any E ⊆ Rn

and p ∈ Rn. Say that p is supported by E if there exist n + 1 vectors (not necessarily distinct)
(p′,p1, . . . ,pn) ∈ E and an action vector a ∈ A such that for all i

(1) pi = (1 − δ) f (a) + δp′i ,

and

(2) pi ≥ (1 − δ)di(a) + δpi
i for all a′i ∈ Ai.

We may think of a as the supporting action of p, of p′ as the supporting continuation payoff of p,
and so on, and define the entire collection (a,p′,p1, . . .pn) as the supporter of p (“in E”).

Now define a map φ : F 7→ F by

φ(E) ≡ {p ∈ Rn
|p is supported by E}.

It is easy to check that φ is well-defined and indeed maps into F . [Use condition [G.2] as well
as (1).]
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We study several properties of this map. First, a set W ∈ F is self-generating (Abreu, Pearce
and Stacchetti (1990)) if W ⊆ φ(W).

T 1. If W is self-generating, then W ⊆ V, where V is the set of all normalized perfect equilibrium
payoffs.

Proof. Pick p ∈W. We exhibit an equilibrium σ that yields payoff p. Proceed by induction on
the length of t-histories. For h(0), pick p(h(0)) = p and a(h(0)) to be any supporting action for
p drawn from a supporter in W.

Recursively, suppose that we have defined an action a(h(s)) as well as an equilibrium payoff
vector p(h(s)) for every s-history h(s) and all 0 ≤ s ≤ t. Now consider a t+ 1 history ht+1, which
we can write in the obvious way as ht+1 = (h(t), a(t)) for some t-history h(t) and some action
vector a(t) ∈ A.

Let a be a supporting action for p(h(t)). If a = a(t), or if a differs from a(t) in at least two
components, define p(h(t + 1)) to be p′, where p′ is a supporting continuation payoff for p(ht)
in W, and define a(h(t + 1)) to be the corresponding action that supports p(h(t + 1)). If a , a(t)
in precisely one component i, then define p(h(t + 1)) to be the ith supporting punishment pi for
p(h(t)) in W, and a(h(t + 1)) to be a supporting action for p(h(t + 1)).

Having completed this recursion, define a strategy profile by σ(t)[h(t)] = a(h(t)) for every t
and every t-history. Use the one-shot deviation principle to show that σ is a subgame perfect
equilibrium. �

E. Establish the following properties of the mapping φ.

[1] φ is isotone in the sense that if E ⊆ E′, then φ(E) ⊆ φ(E′).

[2] Under assumptions (G.1) and (G.2), φ maps compact sets to compact sets: that is, if E is a
compact subset of F∗, then φ(E) is compact as well.

Our next theorem is an old result: the set of perfect equilibrium payoffs is compact. But the
proof is new.

T 2. Under assumptions [G.1] and [G.2], the set of perfect equilibrium payoffs V is compact.

Proof. We begin by showing that V ⊆ φ(cl V), where cl V denotes the closure of V. To this
end, take any perfect equilibrium payoff p. Then there is a SGPE supporting p. Consider the
action profile a prescribed in the first date of this equilibrium, as well as the prescribed paths
and payoff vectors following every 1-history. These may be partitioned in the following way:
(i) the payoff p′ assigned if a is played as prescribed; (ii) for each i, a mapping that assigns
a payoff vector pi(a′i ) following each choice of a′i at time period zero, assuming that others are
sticking to the prescription of a, and (iii) payoff vectors that follow upon multiple simultaneous
deviations of players from a.

Ignore (iii) in what follows.

Consider (ii). Note that pi(a′i ) ∈ V for all a′i , and that by the notion of SGPE,

pi ≥ (1 − δ) fi(a′i , a−i) + δpi
i(a
′

i )
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for all choices a′i ∈ Ai. Replacing each pi(a′i ) by a payoff vector pi in cl V that minimizes i’s
payoff, we see that

pi ≥ (1 − δ) fi(a′i , a−i) + δpi
i

for every action a′i . Consequently,

pi ≥ (1 − δ)di(a) + δpi
i.

Do this for every i, and combine with (i) to conclude that (a,p′,p1, . . . ,pn) is a supporter of p.
This proves that p ∈ φ(cl V), so that V ⊆ φ(cl V).

Next, observe that because V is bounded, cl V is compact. Consequently, by (2) of the exercise
above, φ(cl V) is compact as well. It follows from this and the claim of the previous paragraph
that cl V ⊆ φ(cl V). But then by Theorem 1, cl V ⊆ V. This means that V is closed. Since V is
bounded, V is compact. �

These results permit the following characterization of V (note the analogy with the functional
equation of dynamic programming).

T 3. Under assumptions [G.1] and [G.2], V is the largest fixed point of φ.

Proof. First we show that V is indeed a fixed point of φ. Since V ⊆ φ(cl V) (see proof of
Theorem 2) and since V is compact, it follows that V ⊆ φ(V). Let W ≡ φ(V), then V ⊆ W. By
the exercise (1) above, it follows that W = φ(V) ⊆ φ(W). Therefore W is self-generating, and
so by Theorem 1, W ⊆ V. Combining, we see that W = V, which just means that V is a fixed
point of φ.

To complete the proof, let W be any other fixed point of φ. Then W is self-generating. By
Theorem 1, W ⊆ V, and we are done. �

4. E P

An alternative way to think about equilibria is to assign paths of play following every history,
rather than continuation payoffs. Ultimately — except in very simple cases — it is the latter
view that has come to be dominant in applications, but let us take a look at this alternative.

Informally, paths following every history may be pieced back together to form a strategy,
provided that their description satisfies some minimal consistency requirements.

Thus think of a strategy as specifying (i) an “initial path” a, and (ii) paths a′ following each
t-history. We may think of the initial path as the “desired” outcome of the game, and of all
other (noninitial) paths as “punishments”.

A path a is (supportable as) a perfect equilibrium path if there exists perfect equilibrium σ such
that a = a(σ).

A full specification of all paths and punishments looks very complicated, but the compactness
of the set of equilibrium values allows for a dramatic simplification, due to Abreu (1988).

Consider strategy profiles that have the good fortune to be completely described by an (n+ 1)-
vector of paths (a0, a1, . . . , an), and a simple rule that describes when each path is to be in effect.
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Think of a0 as the initial or “desired” path and of ai as the punishment for player i. That is,
any unilateral deviation of player i from any path will be followed by starting up the path ai.
[Two or more simultaneous deviations are ignored; they are treated exactly as if no deviations
have occurred.] Call the resulting strategy profile a simple strategy profile σ(a0, a1, . . . , an).

E. Using an inductive argument on time periods, or otherwise, prove thatσ(a0, a1, . . . , an)
is uniquely defined.

Recall V; it is compact. Define p̄i to be any payoff vector p that solves the problem: minp∈V pi.
Let āi be a feasible path “generated” from p̄i by collecting in sequence the supporting actions
for p̄i and for all its continuation payoffs of the form p′, p′′, . . . .

T 4. (Abreu [1988]). A path a is supportable as a SGPE if and only if the simple strategy
profile σ = σ(a; ā1, . . . , ān) is a perfect equilibrium.

Moreover, to check that σ is perfect, it simply suffices to check the on-the-path inequalities

pi(t) ≥ (1 − δ)d(a(t)) + δp̄i
i

for all i and t, where pi(t) =
∑
∞

s=t δ
s−t fi(a(s)).

Proof. All we need to do is observe that it is necessary and sufficient to use the worst perfect
equilibrium punishments for deviations in all cases. �

The collection (ā1, . . . , ān) is called an optimal penal code (Abreu (1988)). The insight underlying
an optimal penal code is that unless there is some extraneous reason to make the punishment
fit the crime, a discounted repeated game sees no reason to use such tailored punishments.2

It should be mentioned, however, that while these punishments appear to be “simple” in
principle, they may be hard to compute in actual applications. Later on we shall specialize to
symmetric games to obtain some additional insight into how these punishments work.

5. C  N R

Is Nash reversion the worst imaginable credible punishment? To answer this question first
look at the worst imaginable punishment you can inflict on a player: This is the idea of the
minmax or security level: minimize the maximum payoff that a player can get from each of her
actions. Formally, define

mi ≡ min
a−i

max
ai

fi(ai, a−i) = min
a

di(a).

[Let’s not worry about mixed strategies here.] Now if we didn’t worry about credibility for
the other players, the minmax is what they could restrict player i to. Simply choose the
minimaxing action profile for the others and i will be nailed down to no more than mi. In
fact, it’s more than that. In no way can we nail i down to anything less than her security level.
For given the opponent strategy profile, i would know what is being played at every node of
the game tree. She could respond accordingly to get at least mi at every node, so her lifetime
normalized payoff is also no less than mi in any equilibrium. With this in mind, take another
look at the prisoners’ dilemma.

2Be warned: this result is not true of undiscounted repeated games.
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C2 D2
C1 2, 2 0, 3
D1 3, 0 1, 1

Notice that the minmax payoff is 1 for each player. Also, Nash reversion yields a payoff of
1 and therefore attains the security level. So the Nash reversion theorem is “enough” in the
sense that anything that can be supported as a SGPE outcome can also be supported using
Nash reversion.

Here is an economic example where Nash reversion is enough to support all the collusive
outcomes that can conceivably be supported.

Example. Bertrand Competition. Looks just the same as the Cournot example studied earlier,
except this time the firms will post prices rather than choose quantities. So: each firm’s cost
is linear in output xi, given by cxi. There is a demand curve P(x), except this time it will be
more useful to write the demand curve in “inverse form” D(p), where D(p) is the total quantity
demanded by the market when the price is p. There are n firms; each firm i chooses a price pi.
The firm with the lowest price supplies the whole market. If there are two or more firms with
the lowest price, then they split the market.

Claim. If n ≥ 2 there is a unique Nash equilibrium payoff outcome in which each firm makes
zero profits. [If n ≥ 3 there are several Nash equilibria but they all yield the same outcome in
terms of payoffs.]

Proof. Left to you!

By the claim, we can see that Bertrand competition attains the security level for each firm, and
therefore if we are looking to support any possible outcome it is enough to check whether
a one-shot deviation from that outcome can be deterred by the threat of Nash punishment
forever.

Let’s work a bit more on the practicalities of doing this: look at a price p that is above the cost
of production c and think about getting all firms to charge that price. First consider a price p
between c (the unit cost of production) and p∗, the joint monopoly price. By conforming, each
firm gets a lifetime normalized payoff of

(p − c)D(p)/n

If a firm deviates, the supremum payoff she can get is the whole market at price p (she needs
to only deviate a tiny bit downwards). So the no-deviation condition reads:

(p − c)D(p)/n ≥ (1 − δ)(p − c)D(p) + δ Nash payoff = (1 − δ)(p − c)D(p).

Or equivalently

(3) δ ≥ 1 − (1/n).

Notice that this condition is independent of the price you want to support. This is a conse-
quence of the linearity of the cost function.

Important. Just as the infinite repetition of Nash is a subgame-perfect equilibrium but at
the same time inefficient, we do not have any “right” to assert that the best of the collusive
equilibria will in fact come about: p = p∗. There are simply many equilibria, provided that
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the condition (3) is satisfied, and choosing among them must involve considerations over and
above the equilibrium notion itself.

Indeed, to play this theme some more, notice that even prices on the “wrong side of monopoly”
can be supported as SGP equilibria. Pick some p > p∗. Once again, conformity yields a lifetime
payoff of

(p − c)D(p)/n
Now if a firm deviates, what is the best payoff she can get? The firm will not want to undercut
by a small bit: it will prefer to descend all the way to the monopoly price, earning a one-period
payoff of (p∗ − c)D(p∗). So the no-deviation condition now reads

(p − c)D(p)/n ≥ (1 − δ)(p∗ − c)D(p∗) + δ Nash = (1 − δ)(p∗ − c)D(p∗).

This gives us another condition on the discount factor:

(4) δ ≥ 1 − [λ(p)/n],

where λ(p) is the ratio of collusive profits at the price p to monopoly profits; i.e.,

λ(p) =
(p − c)D(p)

(p∗ − c)D(p∗)
.

Note that λ(p) < 1 (because we are looking at prices higher than the monopoly price) and what
is more, λ(p) declines further as p increases, because we are in the inverted-U case. This means
that higher and higher collusive prices (above the monopoly price) do create greater demands
on patience, in contrast with the case in which prices are below the monopoly price.

6. PM S T N R

The example above notwithstanding, there are several games — the Cournot oligopoly being
a good example — in which the one-shot Nash equilibrium fails to push agents down to
their security level. This raises the question of whether more severe credible punishments are
available.

Example. [Osborne, p. 456.] Consider the following game:

A2 B2 C2
A1 4, 4 3, 0 1, 0
B1 0, 3 2, 2 1, 0
C1 0, 1 0, 1 0, 0

The unique Nash equilibrium of the above game involves both parties playing A. But it is easy
to check that each player’s security level is 1. So are there equilibrium payoffs “in between”?

Consider the following strategy profile, descibed in two phases, which we describe as follows:

The Ongoing Path. (Phase O) Play (B1,B2) at every date.

The Punishment Phase. (Phase P) Play (C1,C2) for two periods; then return to Phase O.

Start with Phase O. If there is any deviation, start up Phase P. If there is any deviation from
that, start Phase P again.
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To check whether this strategy profile forms a SGPE, suffices to check one-shot deviations.

Phase O yields a lifetime payoff of 2. A deviation gets her the payoff

(1 − δ)[3 + δ0 + δ20] + δ32.

Noting that 1 − δ3 = (1 − δ)(1 + δ + δ2), we see that a deviation in Phase O is not worthwhile if

2 + 2δ + 2δ2
≥ 3

or δ ≥ (
√

3 − 1)/2.

What about the first date of Phase P? Lifetime utility in this phase is δ22 (why?). If she deviates
she can get 1 today, then the phase is started up again. So deviation is not worthwhile if

(5) δ22 ≥ (1 − δ)1 + δδ22

or if δ ≥
√

2/2. This is a stronger restriction than the one for phase O so hold on to this one.

Finally, notice without doing the calculations that it is harder to deviate in date 2 of Phase P
(why?). So these strategies form a SGPE if δ ≥

√
2/2.

Several remarks are of interest here.

1. The equilibrium payoff from this strategy profile is 2. But in fact, the equilibrium bootstraps
off another equilibrium: the one that actually starts at Phase P. The return to that equilibrium
is even lower: it is δ22.

2. Indeed, at that lowest value of δ for which this second equilibrium is sustainable, the
equilibrium exactly attains the minimax value for each player! And so everything that can be
conceivable sustained in this example can be done with this punishment equilibrium, at least
at this threshold discount factor.

3. Notice that the ability to sustain this security value as an equilibrium payoff is not exactly
“monotonic” in the discount factor. In fact if the discount factor rises a bit above the minimum
threshold you cannot find an equilibrium with security payoffs. But this is essentially an
integer problem — you can punish for two periods but the discount factor may not be “good
enough” for a three-period punishment. Ultimately, as the discount factor becomes close to 1
we can edge arbitrarily close to the security payoff and stay in that close zone; this insight will
form the basis of the celebrated folk theorem.

Example. [Abreu (1988).] Here is a simple, stripped-down version of the Cournot example in
which we can essentially try out the same sort of ideas. The nice feature about this example
(in contrast to the previous one, the role of which was purely pedagogical) is that it has some
collusive outcome better than the Nash which players are trying to sustain.

L2 M2 H2
L1 10, 10 3, 15 0, 7

M1 15, 3 7, 7 −4, 5
H1 7, 0 5,−4 −15,−15

Think of L, M and H as low, medium and high outputs respectively. Now try and interpret the
payoffs to your satisfaction.
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Notice that each player’s maximin payoff is 0, but of course, no one-shot Nash equilibrium
achieves this payoff.

1. You can support the collusive outcome using Nash reversion. To check when this works,
notice that sticking to collusion gives 10, while the best deviation followed by Nash reversion
yields

(1 − δ)15 + δ7.

It is easy to see that this strategy profile forms an equilibrium if and only if δ ≥ 5/8 . For lower
values of δ Nash reversion will not work.

2. But here is another one that works for somewhat lower values of δ. Start with (L1,L2). If
there is any deviation play (H1,H2) once and then revert to (L1,L2). If there is any deviation
from that, start the punishment up again. Check this out. The punishment value is

(6) −15(1 − δ) + 10δ ≡ p,

and so the no-deviation constraint in the punishment phase is

p ≥ (1 − δ)0 + δp,

or p ≥ 0. This yields the condition δ ≥ 3/5 .

What about the collusive phase? In that phase, the no-deviation condition tells us that

10 ≥ (1 − δ)15 + δp

but (6) assures us that this restriction is always satisfied (why?). So the collusive phase is not
an issue, so our restriction is indeed δ ≥ 3/5, the one that’s needed to support the punishment
phase.

3. For even lower values of δ, the symmetric punishment described above will not work.
But here is something that else that will: punishments tailored to the deviator! Think of two
punishment phases, one for player 1 and one for player 2. The punishment phase for player i
(where i is either 1 or 2) looks like this:

(Mi,H j); (Li,M j), (Li,M j), (Li,M j), . . .

Now we have to be more careful in checking the conditions on the discount factor. First write
down the payoff to players i and j from punishment phase Pi, the one that punishes i. It is

p ≡ −4(1 − δ) + 3δ in stage 1 and 3 in each stage thereafter

for the “punishee” player i and

5(1 − δ) + 15δ in stage 1 and 15 in each stage thereafter

for the “punisher” player j.

now, if i deviates in the first stage of his punishment he gets 0 and then is punished again. So
the no-deviation condition is

p ≥ (1 − δ)0 + δp,

or just plain p ≥ 0, which yields the restriction δ ≥ 4/7 .

What if i deviates in some future stage of his punishment? The condition there is

3 ≥ (1 − δ)7 + δp = (1 − δ)7 − δ(1 − δ)4 + δ23,
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but it is easy to see that this is taken care of by the δ ≥ 4/7 restriction.

Now we must check j’s deviation from i’s punishment! In the second and later stages there is
nothing to check (why?). In stage 1, the condition is

5(1 − δ) + 15δ ≥ (1 − δ)7 + δp.

[Notice how j’s punishment is started off if she deviates from i’s punishment!] Compared with
the previous inequality, this one is easier to satisfy.

Finally, we must see that no deviation is profitable from the original cooperative path. This
condition is just

10 ≥ (1 − δ)15 + δp,

and reviewing the definition of p we see that no further restrictions on δ are called for.

4. Can we do still better? We can! The following punishment exactly attains the minimax
value for each agent for all δ ≥ 8/15 .

To punish player i, simply play the path

(Li,H j); (Li,H j), . . .

forever. Notice that this pushes player i down to minimax. Moreoover, player i cannot
profitably deviate from this punishment.

But player j can! The point is, however, that in that case we will start punishing player j with
the corresponding path

(L j,Hi); (L j,Hi), . . .

which gives her zero. All we need to do now is to check that a one-shot deviation by j is
unprofitable. Given the description above, this is simply the condition that

7 ≥ (1 − δ)15 + δ punishment payoff = (1 − δ)15.

This condition is satisfied for all δ ≥ 8/15.

So you see that in general, we can punish more strongly than Nash reversion, and what is
more, this is a variety of such punishments, all involving either a nonstationary time structure
(“carrot-and-stick”, as in part 2) or a family of player-specific punishments (as in part 4) or
both (as in part 3). This leads to the Pandora’s Box of too many equilibria. The repeated game,
in its quest to explain why players cooperate, also ends up “explaining” why they might fare
even worse than one-shot Nash!

7. S G: A S C

Finding individual-specific punishments may be a very complicated exercise in actual appli-
cations. See Abreu [1986] for just how difficult this exercise can get, even in the context of a
simple game such as Cournot oligopoly. The purpose of this section is to identify the worst
punishments in a subclass of cases when we restrict strategies to be symmetric in a strong
sense.
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A game G is symmetric if Ai = A j for all players i and j, and the payoff functions are symmetric
in the sense that for every permutation p of the set of players {1, . . . ,n},

fi(a) = fp(i)(ap)

for all i and action vectors a, where ap denotes the action vector obtained by permuting the
indices of a according to the permutation p.

A strategy profile σ is strongly symmetric if for every t-history h(t), σi(t)[h(t)] = σ j(t)[h(t)] for all i
and j. Note that the symmetry is “strong” in the sense that players take the same actions after
all histories, including asymmetric histories.

Now for some special assumptions. We will suppose that each Ai is the (same) interval of real
numbers, unbounded above and closed on the left. Make the following assumptions:

[S.1] Every payoff function fi is quasiconcave in ai and continuous. Moreover, the payoff
to symmetric action vectors (captured by the scalar a), denoted f (a), satisfies f (a) → −∞ as
a→∞.

[S.2] The best payoff to any player when all other players take the symmetric action a, denoted
by d(a), is nonincreasing in a, but bounded below.

[S.3] For every symmetric action a for the others, and 0 for i, fi(0, a) is bounded in a (for instance,
can set fi(0, a) = 0).

E. As you can tell, Conditions [S.1]–[S.3] are set up to handle something like the case
of Cournot oligopoly. Even though the action sets do not satisfy the compactness assumption,
the equilibrium payoff set is nevertheless compact. How do we prove this?

[a] First prove that a one-shot equilibrium exists.

[b] This means that the set of strongly symmetric perfect equilibrium payoffs V is nonempty.
Now, look at the infimum perfect equilibrium payoff. Show that it is bounded below, using
S.2. Using S.1, show that the supremum perfect equilibrium payoff is bounded above.

[c] Now show that the paths supporting infimum punishments indeed are well-defined, and
together they form a simple strategy profile which is a SGPE.

[d] Finally, prove the compactness of V by using part [c].

[For the answer to the exercise, see the appendix.]

With the above exercise worked out, we can claim that there exists best and worst symmetric
payoffs v∗ and v∗ respectively, in the class of all strongly symmetric SGPE. The following
theorem then applies to these payoffs.

T 5. Consider a symmetric game satisfying [S.1] and [S.2]. Let v∗ and v∗ denote the highest
and lowest payoff respectively in the class of all strongly symmetric SGPE. Then

[a] The payoff v∗ can be supported as a SGPE in the following way: Begin in phase I, where all players
take an action a∗ such that

(1 − δ) f (a∗) + δv∗ = v∗.
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If there are any defections, start up phase I again. Otherwise, switch to a perfect equilibrium with
payoffs v∗.

[b] The payoff v∗ can be supported as a SGPE using strategies that play a constant action a∗ as long
as there are no deviations, and by switching to phase 1 (with attendant payoffs v∗) if there are any
deviations.

Proof. Part [a]. Fix some strongly symmetric equilibrium σ̂ with payoff v∗. Because the
continuation payoff can be no more than v∗, the first period action along this equilibrium must
satisfy

f (a) ≥
−δv∗ + v∗

1 − δ
.

Using [S.1], it is easy to see that there exists a∗ such that f (a∗) = −δv
∗+v∗

1−δ . By [S.2], it follows that
d(a∗) ≤ d(a). Now, because σ̂ is an equilibrium, it must be the case that

v∗ ≥ (1 − δ)d(a) + δv∗ ≥ (1 − δ)d(a∗) + δv∗,

so that the proposed strategy is immune to deviation in Phase I. If there are no deviations, we
apply some SGPE creating v∗, so it follows that this entire strategy as described constitutes a
SGPE.

Part [b]. Let σ̃ be a strongly symmetric equilibrium which attains the equilibrium payoff v∗.
Let a ≡ a(σ̃) be the path generated. Then a has symmetric actions a(t) at each date, and

v∗ = (1 − δ)
∞∑

t=0

δt f (at).

Clearly, for the above equality to hold, there must exist some date T such that f (aT) ≥ v∗.
Using Condition 1, pick a∗ ≥ aT such that f (a∗) = v∗. By Condition 2, d(a∗) ≤ d(aT). Now
consider the strategy profile that dictates the play of a∗ forever, switching to Phase I if there
are any deviations. Because σ̃ is an equilibrium, because v∗ is the worst strongly symmetric
continuation payoff, and because v∗ is the largest continuation payoff along the equilibrium
path at any date, we know that

v∗ ≥ (1 − δ)d(aT) + δv∗.

Because d(aT) ≥ d(a∗),
v∗ ≥ (1 − δ)d(a∗) + δv∗

as well, and we are done. �

The problem of finding the best strongly symmetric equilibrium therefore reduces, in this case,
to that of finding two numbers, representing the actions to be taken in two phases.

Something more can be said about the punishment phase, under the assumptions made here.

T 6. Consider a symmetric game satisfying [S.1] and [S.2], and let (a∗, a∗) be the actions
constructed to support v∗ and v∗ (see statement of Theorem 5). Then

d(a∗) = v∗
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Proof. We know that in the punishment phase,

(7) v∗ ≥ (1 − δ)d(a∗) + δv∗,

while along the equilibrium path,

(8) v∗ = (1 − δ) f (a∗) + δv∗.

Suppose that strict inequality were to hold in (7), so that there exists a number v < v∗ such that

(9) v ≥ (1 − δ)d(a∗) + δv.

Using Condition 1, pick a ≥ a∗ such that

(10) v = (1 − δ) f (a) + δv∗.

[To see that this is possible, use Condition 1, (8), and the fact that v < v∗.] Note that d(a) ≤ d(a∗),
by Condition 2. Using this information in (9), we may conclude that

(11) v ≥ (1 − δ)d(a) + δv.

Combining (10) and (11), we see from standard arguments (check) that v must be a strongly
symmetric equilibrium payoff, which contradicts the definition of v∗. �

8. T F T

The folk theorem reaches a negative conclusion regarding repeated games. Repeated games
came into being as a way of reconciling the observation of collusive (non-Nash) behavior with
some notion of individual rationality. The folk theorem tells us that in “explaining” such
behavior, we run into a dilemma: we end up explaining too much. Roughly speaking, every
individually rational payoff is supportable as a SGPE, provided that the discount factor is
sufficiently close to unity.

Recall that the security level of player i is given by the value

v̂i ≡ min
a∈A

di(a).

Let âi be an action vector such that v̂i is exactly attained; i.e., fi(âi) = v̂i. Let v̂i
j be the payoff to j

when this is happening. [For instance, v̂i = v̂i
i.] Normalize the security level to equal zero for

each player.

For each δ, denote by V(δ) the set of all (normalized) perfect equilibrium payoffs.

T 7. Define F∗∗ to be the set of all individually rational feasible payoffs, i.e.,

F∗∗ ≡ F∗ ∩ {p ∈ Rn
|p ≥ 0 for all i},

and assume that F∗∗ is n-dimensional. Then for each p̃ in F∗∗ and each ε > 0, there exists a payoff vector
p in F∗∗ and also in the ε-neighborhood of p̃ such that p ∈ V(δ) for all δ sufficiently close to unity.

Proof. For simplicity we shall assume in this proof that any point in F∗, the convex hull of the
set of feasible payoffs, can be attained by some pure strategy combination. Later, we indicate
how the proof can be extended when this is not the case.
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Pick any p̃ ∈ F∗∗, and ε > 0. Because F∗∗ has full dimension, it is possible to find p in the
ε-neighborhood of p̃ such that p ∈ int F∗∗. Now pick n payoff vectors {p̄i

}i∈N (each in F∗∗)
“around” p as follows:

p̄i
i = pi,

p̄i
j = p j + γ for j , i,

for some γ > 0. These vectors will be fixed throughout the proof. By our simplifying
assumption, there are action vectors a, ā1, . . . , ān such that f(a) = p and f(āi) = p̄i for each
i = 1, . . . ,n.

The first of these action vectors is, of course, going to support the desired payoff, and the latter
are going to serve as “rewards” to people who carry out punishments that may not be in their
own short-term interests. The punishments, in turn, are going to be derived from the actions
{âi
} that minimax particular players and drive them down to their security levels. Now for a

precise statement. For each i = 0, 1, . . . ,n, consider the paths

a0
≡ (a, a, a, . . .),

ai = (âi, . . . âi) for T periods,

= (āi, āi, . . .) thereafter,

where T is soon going to be cunningly chosen (see below).

Consider the simple strategy profile σ ≡ σ(a0, a1, . . . , an). We claim that there exists an integer
T and a δ∗ ∈ (0, 1) such that for all δ ∈ (δ∗, 1), σ is a perfect equilibrium.

For convenience, let us record the normalized payoff to player i along each of the paths. We
have, first,

Fi(a0) = pi

for all i, and for all 0 ≤ t ≤ T,

Fi(a j, t) = v̂ j
i (1 − δ

T+1−t) + δT+1−tp j
i (γ),

where p j
i (γ) = pi + γ if i , j, and p j

i (γ) = pi if i = j. Of course, for all t ≥ T + 1,

Fi(a j, t) = p j
i (γ).

We must check the no-deviation constraints from each path. (That’s enough, by the one shot
deviation principle.)

Deviations from a0. Suppose that player i were to deviate from the path a0. Then he gets
minimaxed for T + 1 periods, with 0 return, after which he gets pi again forever. If M is the
maximum absolute value of one shot payoffs in the game, the best deviation along the path is
bounded above by M, so that the no-deviation condition is surely satisfied if

pi ≥ (1 − δ)M + δT+1pi.

This inequality holds if

(12)
1 − δT+1

1 − δ
≥

M
pi
.
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[Note that pi > 0 (why?) so that this inequality makes perfect sense.] Now look at (12). As
δ→ 1, the LHS goes to T + 1 (why?). So if we take

(13) T ≥ max
i

M
pi
,

then (12) is automatically satisfied for all δ sufficiently close to unity.

Deviations from a j. First check player j’s deviation. If (12) is satisfied (for i = j), player j
will never deviate from the second phase of his own punishment, because he just goes back
to getting p j. The deviations may have differnt values, of course, but we have bounded these
above by M anyway to arrive at (12). In the first phase, note that by construction, player j is
playing a one-shot best response. So there is no point in deviating, as there is no short-term
gain and it will be followed by restarting his punishment.

It remains to check player i’s deviation from the path a j when i , j. By the same argument as
in the previous paragraph, a deviation in the second phase is not worthwhile, provided that
(12) is satisfied. We need to check, then, that player i will cooperate with j’s punishment in
the first phase. He will do so if for each integer t that records the number of periods left in the
first phase,

(1 − δt)v̂ j
i + δ

t(pi + γ) ≥ (1 − δ)M + δT+1pi.

Replace v̂ j
i by −M on the LHS, and t by T + 1. On the RHS, replace (1 − δ)M by (1 − δT+1)M.

Then noting that M and pi are both positive, it is clear that the above inequality holds if

−(1 − δT+1)M + δT+1(pi + γ) ≥ (1 − δT+1)M + δT+1pi,

or if

(14)
δT+1

1 − δT+1
≥

2M
γ
.

Now it should be clear that for any T satisfying (13), both conditions (12) and (14) are satisfied
for all δ sufficiently close to unity. So we are done.

It remains to remark on the case where the payoffs p and its “constructed” neighbors are not
exactly generated by pure action vectors. The proof then has to be slightly modified. First we
perturb p a tiny bit if necessary and the choose δ close enough to unity so that in a sufficiently
large number of finite periods, we can get p as the convex combination of payoffs from various
pure actions (where the convexification is being carried out intertemporally). Then all we have
to do is to use a nonstationary path (with a finite periodicity) to generate p. We do the same
for each of the payoff vectors p̄i as well. The proof then goes through just the same way as
before. The restrictions created by the choice of δ go “in the same direction” anyway. �

The full-dimensionality of F∗ is needed in general (though not for two-player games). Without
it, the theorem is generally false. Consider the following

Example. Player 1 chooses rows, player 2 chooses columns, and player 3 chooses matrices:

Each player’s minmax value is 0, but notice that there is no action combination that simulta-
neously minmaxes all three players. E.g., to minimax player 3, 12 play UR. To minmax 2, 13
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L R
U 1, 1, 1 0, 0, 0
D 0, 0, 0 0, 0, 0

L R
U 0, 0, 0 0, 0, 0
D 0, 0, 0 1, 1, 1

play U2. To minmax player 1, 23 play L2. Nothing works to simultaneously minmax all three
players.

Let α be the lowest equilibrium payoff for any player. Note that

α ≥ (1 − δ)D + δα,

where D is the largest deviation payoff to some player under any first-period action supporting
α. It can be shown (even with the use of observable mixed strategies) that D ≥ 1/4. So α ≥ 1/4.
No folk theorem.

The problem is that we cannot separately minmax each deviator and provide incentives to the
other players to carry out the minmaxing, because all payoffs are common. If there is enough
“wiggle-room” to separately reward the players for going into the various punishment phase,
then we can get around this problem, as noted in the proof of Theorem 7.

A

Answer to the Exercise for Strongly Symmetric Games.

For each person, write the action set as [0,∞). Fix some symmetric action a for the other players
and look at one player’s best response. S.1 tells us that this player’s payoff is quasiconcave in
his own actions and S.2 tells us that the best payoff is well-defined. By quasiconcavity, the set
of best responses A(a) to a is convex-valued. By continuity of payoffs, A(a) is upperhemicon-
tinuous.

Now I claim that for large a we have a′ < a for all a′ ∈ A(a). Suppose on the contrary that there
is am →∞ and a′m ∈ A(am) for each am such that a′m ≥ am. So there is a sequence λm ∈ (0, 1] such
that am = λma′m for all am. By quasiconcavity, f (am) ≥ min{ f (0, am), f (a′m, am)}. But the former
term is bounded by S.3, and the latter term is bounded below by S.2. This contradicts the fact
that f (am)→ −∞ as m→∞.

This proves, by a slight variation on the intermediate value theorem, that there exists a∗ such
that a∗ ∈ A(a∗). Clearly, a∗ is a strongly symmetric equilibrium, which proves [a].

[a] This means that the set of strongly symmetric perfect equilibrium payoffs V is nonempty.
Simply repeat a∗ regardless of history. Now define d ≡ infa d(a) > −∞ by assumption. d is like
the strongly symmetric security level. Lifetime payoffs can’t be pushed below this. Therefore
the infimum of payoffs in V is at least as great as d.

Of course, the supremum is bounded because all one-shot payoffs are bounded by assumption,
so in particular the symmetric equilibrium payoff is bounded above.

[c] Let pm be a sequence of strongly symmetric equilibrium payoffs in V converging down to
the infimum payoff p. For each such pm let am(t) be an action path supporting pm using strongly
symmetric action profiles at any date. Let M be the maximum strongly symmetric payoff in
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the game. Then, because infimum payoffs in V are bounded below, say by d, it must be the
case that

(1 − δ) f (am(t)) + δM ≥ d
for every date t. But this means that there exists an upper bound ā such that am(t) ≤ ā for every
index m and every date t.

This bound allows us to extract a convergent subsequence of m —call it m′ — such that for
every t,

am′(t)→ a(t).
It is very easy to show that that the simple strategy profile defined as follows:

“Start up {a(t)}. If there are any deviations, start it up again,”

is a simple penal code that supports the infimum punishment.

[d] Finally, prove the compactness of V. Take any payoff sequence pm each of which lies in
V, converging to some p. Each can be supported by some action path am(t), with the threat
of starting up the simple penal code of [a3] in case there is any deviation. Take a convergent
subsequence of am(t), call the pointwise limit path a(t), and show that it supports p with the
threat of retreating to a(t) if there is any deviation.

By the way, why is condition [S.3] needed? Can you provide a counterexample to existence
otherwise?


