
Basic Game-Theoretic Concepts

Game in strategic form has following elements

Player set N

(Pure) strategy set for player i, Si.

Payoff function fi for player i

fi : S → R, where S is product of Si’s.
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Examples

various two-person games

L R
T 2, 2 0, 3
B 3, 0 1, 1

Prisoner’s Dilemma
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Examples

various two-person games

L R
T 2, 2 0, 0
B 0, 0 1, 1

Coordination Game
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Examples

various two-person games

L R
T 2, 1 0, 0
B 0, 0 1, 2

Battle of the Sexes
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Examples

various two-person games

L R
T 1,−1 −1, 1
B −1, 1 1,−1

Zero-Sum Game; matching pennies
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economic games, such as Cournot oligopoly

n firms, so N = {1, . . . , n}.

Homogeneous product x. Demand curve P = P (x).

Output of firm i is si; x = s1 + · · ·+ sn.

Payoff function for i is fi(s) = P
�P

j sj

�
−C(si).
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Be careful of strategies in sequential games . . .

Player 1 chooses from a set of actions A1.

Player 2 observes this choice, then chooses from A2.

What are S1 and S2?
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Be careful of strategies in games with information resolution . . .

Player observes a signal from a set X, then chooses an action from
a set A. What is her strategy set?
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Mixed Strategies

Player i’s mixed strategy is a probability distribution σi over Si.

Space of i’s mixed strategies is Σi.

Payoffs to i:

fi(σ) ≡
X
s

fi(s)σ1(s1) · . . . · σn(sn)

(use integrals if the strategy sets are not finite).

Be careful of mixed strategies; e.g., the sequential auditor game.
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Best Responses

Fix strategy profile σ−i

max i’s payoff fi(si, σ−i).

Solution is a (pure) best response.

A mixed strategy can also be a best response: it must be a prob-
ability distribution over pure best responses.
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Nash Equilibrium

σ∗ is a Nash equilibrium if for every i, σ∗i is a best response to σ∗−i.

Interpreting Mixed Strategies:

as a deliberate choice

large populations

as beliefs

as pure strategies in an “extended game” (purification)
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Look at the usual two-person games:

L R
T 2, 2 0, 3
B 3, 0 1, 1

Prisoner’s Dilemma; unique equilibrium
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Look at the usual two-person games:

L R
T 2, 2 0, 0
B 0, 0 1, 1

Coordination Game; three equilibria
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Look at the usual two-person games:

L R
T 2, 1 0, 0
B 0, 0 1, 2

Battle of the Sexes; three equilibria
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Look at the usual two-person games:

L R
T 1,−1 −1, 1
B −1, 1 1,−1

Matching pennies; no pure strategy equilibrium
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Existence of Nash Equilibrium

Theorem. Every game with finite strategy sets for each player has
a Nash equilibrium, possibly in mixed strategies.

Proof. Let Σ be product of all Σi’s: set of all mixed strategy
profiles.

For each σ ∈ Σ, each i, define

Bi(σ) = {σ′i ∈ Σi|σ′i is a best response to σ−i}

Bi nonempty and convex, and has closed graph.

Define B : Σ � Σ by B(σ) =
�

i∈N Bi(σ).

Use Kakutani.
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How General is That?

Infinite Strategy Spaces. If Si is not finite but compact metric,
then Nash equilibrium exists if each fi is continuous (Glicksburg
fixed point theorem).

Pure Strategy Existence. If Si is compact and convex and fi is
continuous, and also quasiconcave in si, then a Nash equilibrium
exists in pure strategies.

Discontinuous Payoffs. See Dasgupta-Maskin (1986) and Reny
(1999).
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Rationality, Knowledge and Equilibrium

Epistemic Analysis. What players know or believe about the game
and about other players’ knowledge or beliefs.

Observation. [Aumann-Brandenberger.] If each player

is rational

knows her own payoff, and

knows the strategies chosen by other players

Then the strategy profile chosen must be Nash.

Mutual knowledge of strategies is “enough”.
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Now recall notion of (mixed) strategies as beliefs.

Then mutual knowledge of those beliefs isn’t enough.

Theorem. [Aumann-Brandenberger] Assume two players. If the
game, rationality and beliefs are mutual knowledge, then beliefs
form a Nash equilibrium.

(Need more, including common knowledge of beliefs, when there
are more than two players.)
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When Strategies are Not Mutually Known

Now need higher levels of knowledge about rationality and the
game itself.

E.g., study the iteration leading to rationalizability.

Set Σ0
i = Σi for all i. Recursion: given {Σk

j }, define

Σk+1
i = {σi ∈ Σk

i |σi is a BR, within Σk
i , to some σ−i ∈

�
j,i

con(Σk
j )}.

Why convex hull

Independent conjectures

Define rationalizable strategies:

Ri = ∩∞k=0Σk
i .
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The rationalizable pure strategies are Pi = ∪{supp σi|σi ∈ Ri}.

Can be connected to a direct definition that looks a lot like Nash
equilibrium:

A collection (S∗1 , . . . , S∗n) of pure strategy subsets forms a rational-
izable family if for every i

S∗i ⊆ {si ∈ Si|si is a BR to some σ−i with support in
�
j,i

S∗j }.

Note: pure strategy NE forms a rationalizable family.

Theorem. A pure strategy is rationalizable if and only if it belongs
to a rationalizable family.
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Rationalizability doesn’t imply Nash equilibrium . . .

. . . even if the Nash equilibrium is unique.

L M R
T 0, 7 2, 5 7, 0
C 5, 2 3,3∗ 5, 2
B 7, 0 2, 5 0, 7

Unique Nash equilibrium in pure and mixed strategies.

But ({L, R}, {T , B}) forms a rationalizable family, so each of these
four strategies is rationalizable.
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Sometimes rationalizability pins down the solution well.

Cournot example. fi(s) = P (si)x− c(si), where x =
P

j sj.

Make all the assumptions to get “nice” reaction functions.

Do the iteration with pure strategies (mixing makes no difference).

Converges to Nash.

Things are different with three or more firms.
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Related Notions

Strictly Dominated Strategies and Iterated Strict Dominance.

A strategy σi ∈ Σi is strictly dominated if there exists σ′i ∈ Σi such
that fi(σ′i, s−i) > fi(σi, s−i) for all s−i ∈ S−i.

[Doesn’t matter whether we use s−i or σ−i in the definition.]

f(si, s-i)

f(si, s’-i)
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If σi attaches positive probability to dominated si, it is also domi-
nated.

f(si, s-i)

f(si, s’-i)

i

’i
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But even otherwise, σi could be strictly dominated . . .

f(si, s-i)

f(si, s’-i)
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But even otherwise, σi could be strictly dominated . . .

f(si, s-i)

f(si, s’-i)

i
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On the other hand, mixed strategies play a role in dominating other
strategies:

f(si, s-i)

f(si, s’-i)

’i
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Can use this definition to iteratively eliminate strictly dominated
strategies, just as in rationalizability.

Why are the two concepts different then?

A best response to some belief is always an undominated strategy.

An undominated strategy always a best response to some corre-
lated belief (separating hyperplane theorem).

With n = 2, coincides with rationalizability, otherwise weaker.
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Weakly Dominated Strategies and Iterated Weak Dominance.

A strategy σi ∈ Σi is weakly dominated if there exists σ′i ∈ Σi such
that fi(σ′i, s−i) ≥ fi(σi, s−i) for all s−i ∈ S−i, with strict inequality
somewhere.

More problematic. Order of iterated elimination matters.
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Efficiency

Fundamental fact. Nash equilibria in one-shot games “typically”
inefficient.

Calculus the best way to see this.

∂fi
∂si

(s) = 0 in NE, but

FOC for efficiency is

nX
j=1

λj
∂fj

∂si
(s) = 0,

where the lambdas are weights (or Lagrangean multipliers).

Allows you to guess at the “direction” of inefficiency.
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Cournot Example Again

n firms, constant marginal cost c ≥ 0. Market price P (x).

Joint monopoly output — m — the best outcome for the firms.

max[P (x)− c]x.

[FOC] P (m) + mP ′(m)− c = 0.

To check BR at m look at individual derivative evaluated at m:

P (m) +
m

n
P ′(m)− c > 0

Understand where the externality lies.
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