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Abstract. This paper provides an elementary, non-technical, survey of auction
theory, by introducing and describing some of the critical papers in the subject.
(The most important of these are reproduced in a companion book, The Economic
Theory of Auctions, Paul Klemperer (ed.), Edward Elgar (pub.), forthcoming.) We
begin with the most fundamental concepts, and then introduce the basic analysis
of optimal auctions, the revenue equivalence theorem, and marginal revenues.
Subsequent sections address risk-aversion, affiliation, asymmetries, entry,
collusion, multi-unit auctions, double auctions, royalties, incentive contracts,
and other topics. Appendices contain technical details, some simple worked
examples, and a bibliography for each section.
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1. Introduction

Auction theory is important for practical, empirical, and theoretical reasons.
First, a huge volume of economic transactions is conducted through auctions.

Governments use auctions to sell treasury bills, foreign exchange, mineral rights
including oil fields, and other assets such as firms to be privatized. Government
contracts are typically awarded by procurement auctions, and procurement
auctions are also often used by firms buying inputs or subcontracting work; in
these cases, of course, the auctioneer is seeking a low price rather than a high
price. Houses, cars, agricultural produce and livestock, art and antiques are
commonly sold by auction. Other economic transactions, for example takeover
battles, are auctions in effect if not in name. There has recently been an explosion
of interest in designing new auction forms, for example to sell radio spectrum
licences,1 and in using auctions to set up new markets, for example for electricity
and transport.2

Second, because auctions are such simple and well-defined economic environ-
ments, they provide a very valuable testing-ground for economic theory Ð
especially of game theory with incomplete information Ð that has been
increasingly exploited in recent years. Major empirical research efforts have
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focused on auctions for oil drilling rights, timber, and treasury bills3 and there has
also been an upsurge of interest in experimental work on auctions.4

Finally, auction theory has been the basis of much fundamental theoretical
work: it has been important in developing our understanding of other methods of
price formation, most prominently posted prices (as, for example, observed in
most retail stores) and negotiations in which both the buyer and seller are actively
involved in determining the price. There are close connections between auctions
and competitive markets.5 There is also a very close analogy between the theory of
optimal auctions and the theory of monopoly pricing,6 and auction-theory can
also help develop models of oligopolistic pricing.7 Auction-theoretic models and
techniques also apply to non-price means of allocation including queues, wars of
attrition, lobbying contests, other kinds of tournaments, and rationing.8

1.1. Plan of this paper

This paper provides an elementary survey of auction theory, by introducing and
describing some of the critical papers in the subject. The most important of these
are reproduced in a companion book, The Economic Theory of Auctions,9 for
which this paper was originally prepared.
For readers completely new to auction theory, the remainder of this section

provides a brief reÂ sumeÂ of the simplest concepts. The subsequent sections
correspond to the sections into which The Economic Theory of Auctions is
organized. Section 2 discusses the early literature, and Section 3 introduces the
more recent literature. Section 4 introduces the analysis of optimal auctions and
auction theory's most fundamental result: the revenue equivalence theorem. It
also describes how the concept of `marginal revenue' can inform auction theory.
(Technical details are in appendices.) This section (4) focuses on auction theory's
basic model of a fixed set of symmetric, risk-neutral bidders with independent
information who bid independently for a single object. Most of the remainder of
this paper is about the effects of relaxing one or more of these assumptions.
Section 5 permits risk-aversion; Section 6 allows for correlation or affiliation of
bidders' information (with technical details in an appendix); Section 7 analyses
cases with asymmetric bidders; Section 8 considers bidders who have costs of
entering an auction, and addresses other issues pertaining to the number of
bidders; Section 9 asks what is known if there are possibilities for collusion among
bidders; and Section 10 considers multiunit auctions. Section 11 looks at auctions
for incentive contracts, and auctions in which contestants may bid on royalty rates
or quality levels in addition to prices. Section 12 reviews the literature on double
auctions, and Section 13 briefly considers some other important topics including
budget constraints, externalities between bidders, jump bidding, the war of
attrition, and competing auctioneers. Section 14 is about testing the theory, and
Section 15 concludes. Appendices A, B, and C provide technical details about the
revenue equivalence theorem, marginal revenues, and affiliation, respectively.
Appendix D provides some simple worked examples illustrating these Appendices.

228 PAUL KLEMPERER

# Blackwell Publishers Ltd. 1999



{Journals}joes/13-3/n218/n218.3d

Appendix E provides a bibliography organised according to the sections of this
paper.

1.2. The standard auction types

Four basic types of auctions are widely used and analyzed: the ascending-bid
auction (also called the open, oral, or English auction), the descending-bid auction
(used in the sale of flowers in the Netherlands and so also called the Dutch auction
by economists), the first-price sealed-bid auction, and the second-price sealed-bid
auction (also called the Vickrey auction by economists).10, 11 In describing their
rules we will focus for simplicity on the sale of a single object.
In the ascending auction, the price is successively raised until only one bidder

remains, and that bidder wins the object at the final price. This auction can be run
by having the seller announce prices, or by having the bidders call out prices
themselves, or by having bids submitted electronically with the best current bid
posted. In the model most commonly used by auction theorists (often called the
Japanese auction), the price rises continuously while bidders gradually quit the
auction. Bidders observe when their competitors quit, and once someone quits,
she is not let back in. There is no possibility for one bidder to pre-empt the process
by making a large `jump bid'. We will assume this model of the ascending auction
except where stated otherwise.12

The descending auction works in exactly the opposite way: the auctioneer starts
at a very high price, and then lowers the price continuously. The first bidder who
calls out that she will accept the current price wins the object at that price.13

In the first-price sealed-bid auction each bidder independently submits a single
bid, without seeing others' bids, and the object is sold to the bidder who makes the
highest bid. The winner pays her bid (that is, the price is the highest or `first' price
bid).14

In the second-price sealed-bid auction, also, each bidder independently submits
a single bid, without seeing others' bids, and the object is sold to the bidder who
makes the highest bid. However, the price she pays is the second-highest bidder's
bid, or `second price'. This auction is sometimes called a Vickrey auction after
William Vickrey, who wrote the seminal (1961) paper on auctions.15

For reasons we will explain shortly, the ascending and descending auctions are
sometimes referred to as open second-price and open first-price auctions,
respectively.

1.3. The basic models of auctions

A key feature of auctions is the presence of asymmetric information.16 (With
perfect information most auction models are relatively easy to solve.)
In the basic private-value model each bidder knows how much she values the

object(s) for sale, but her value is private information to herself.
In the pure common-value model, by contrast, the actual value is the same for

everyone, but bidders have different private information about what that value
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actually is. For example, the value of an oil-lease depends on how much oil is under
the ground, and bidders may have access to different geological `signals' about that
amount. In this case a bidder would change her estimate of the value if she learnt
another bidder's signal, in contrast to the private-value case in which her value
would be unaffected by learning any other bidder's preferences or information.
A general model encompassing both these as special cases assumes each bidder

receives a private information signal, but allows each bidder's value to be a
general function of all the signals.17 For example, your value for a painting may
depend mostly on your own private information (how much you like it) but also
somewhat on others' private information (how much they like it) because this
affects the resale value and=or the prestige of owning it.

1.4. Bidding in the standard auctions

Consider first the descending auction. Note that although we described this as a
dynamic game, each bidder's problem is essentially static. Each bidder must choose
a price at which she will call out, conditional on no other bidder having yet called
out; and the bidder who chooses the highest price wins the object at the price she
calls out. Thus this game is strategically equivalent to the first-price sealed-bid
auction,18 and players' bidding functions are therefore exactly the same.19 This is
why the descending auction is sometimes referred to as an open first-price auction.
Now with private values, in the ascending auction, it is clearly a dominant

strategy to stay in the bidding until the price reaches your value, that is, until you
are just indifferent between winning and not winning. The next-to-last person will
drop out when her value is reached, so the person with the highest value will win
at a price equal to the value of the second-highest bidder. Furthermore, a little
reflection shows that in a second-price sealed-bid private-values auction it is
optimal for a player to bid her true value, whatever other players do.20 In other
words `truth telling' is a dominant strategy equilibrium (and so also a Nash
equilibrium), so here, too, the person with the highest value will win at a price
equal to the value of the second-highest bidder. This is why the ascending auction
is sometimes referred to as an open second-price auction. However, this
equivalence applies only for private values, or if there are just two bidders. With
any common components to valuations and more than two bidders, players learn
about their values from when other players quit an ascending auction and
condition their behaviour on this information.
A key feature of bidding in auctions with common-values components is the

winner's curse: each bidder must recognize that she wins the object only when she
has the highest signal (in symmetric equilibrium). Failure to take into account the
bad news about others' signals that comes with any victory can lead to the winner
paying more, on average, than the prize is worth, and this is said to happen often
in practice. In equilibrium, bidders must adjust their bids downwards accordingly.
Appendix D provides examples of equilibrium bidding strategies (and the

winner's curse) in the standard auctions, in both private- and common-value
contexts.
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1.5. Terminology

Since the equivalence of descending and first-price sealed-bid auctions is
completely general in single-unit auctions, and ascending and second-price
sealed-bid auctions are also equivalent under many conditions (and have similar
properties more broadly) we will often refer to the two kinds of auctions simply as
first-price and second-price respectively.
Also, we will refer to any model in which a bidder's value depends to some

extent on other bidders' signals as a common-value model. However, note that
some authors reserve the term `common-value' to refer only to the special case
when all bidders' actual values are identical functions of the signals (what we
called the pure common-value case). Also (and somewhat inconsistently) we will
use the term almost common values to mean almost pure common values.
Finally, there is no formal distinction between normal auctions, in which the

auctioneer is the seller and the bidders are buyers who have values for the
object(s) sold, and procurement auctions, where the auctioneer is a buyer and
the bidders are sellers who have costs of supplying the object(s) bought. To
avoid confusion we will generally adopt the former perspective (that the
auctioneer is the seller) even when discussing papers that are couched in terms of
the latter perspective.

2. Early literature

Auctions have been used from time immemorial,21 but they entered the economics
literature relatively recently. Remarkably, the first treatment that recognized the
game-theoretic aspects of the problem,22 Vickrey (1961), also made enormous
progress in analyzing it including developing some special cases of the celebrated
Revenue Equivalence Theorem (see below). Vickrey's 1961 and 1962 papers were
deservedly a major factor in his 1996 Nobel prize,23 and the 1961 paper, especially,
is still essential reading.
Other influential early work was performed by Shubik and his coauthors, and

by Wilson and his student, Ortega Reichert.
Griesmer, Levitan and Shubik (1967) analyse the equilibrium of a first-price

auction in which contestants' valuations are drawn from uniform distributions
with different supports, while Wilson (1969) introduced the (pure) common-value
model and developed the first closed-form equilibrium analysis of the winner's
curse.24

Ortega Reichert's (1968) PhD thesis contains the seeds of much future work,
but the time was perhaps not ripe for it, and it unfortunately never reached
publication. It is a pleasure to be able to publish a small part of it in The Economic
Theory of Auctions: the chapter we publish considers a sequence of two first-price
auctions in which the correlation of players' values for the two objects means that
a player's bid for the first object conveys information about her value for the
second object, and hence about her likely second bid. (We also publish a short
explanatory foreword to the chapter.25) This analysis of a signalling game was
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enormously influential in, for example, guiding Milgrom and Roberts' (1982)
analysis of limit pricing.26

However, with the exception of Vickrey's first (1961) article, these are no longer
papers for the beginner.

3. Introduction to the recent literature

The full flowering of auction theory came only at the end of the 1970s with critical
contributions from Milgrom, in papers both on his own and with Weber; from
Riley, in papers with Maskin and with Samuelson; and from Myerson, among
others, in addition to more from Wilson. These and contemporaneous
contributions rapidly moved the field close to its current frontier. A very readable
introduction to the state of the field by the late 1980s is in McAfee and McMillan
(1987a). Another helpful introductory article is Maskin and Riley (1985) which
manages to convey many of the key ideas in a few pages by focusing on the case
with just two possible types of each of just two bidders.27, 28

4. The basic analysis of optimal auctions, revenue equivalence, and marginal
revenues

Roughly simultaneously, Myerson (1981) and Riley and Samuelson (1981)
showed that Vickrey's results about the equivalence in expected revenue of
different auctions apply very generally:29

Assume each of a given number of risk-neutral potential buyers of an object has
a privately-known signal independently drawn from a common, strictly-
increasing, atomless distribution. Then any auction mechanism in which
(i) the object always goes to the buyer with the highest signal, and (ii) any
bidder with the lowest-feasible signal expects zero surplus, yields the same
expected revenue (and results in each bidder making the same expected payment
as a function of her signal).30

Note that the result applies both to private-value models (in which a bidder's
value depends only on her own signal), and to more general common-value
models provided bidders' signals are independent.
Thus all the `standard' auctions, the ascending, the descending, the first-price

sealed-bid, and the second-price sealed-bid, yield the same expected revenue under
the stated conditions, as do many non-standard auctions such as an `all-pay'
auction (in which every competitor pays her bid but only the highest bidder wins
the object, as in a lobbying competition).31

This Revenue Equivalence Theorem result is so fundamental, so much of auction
theory can be understood in terms of it, and at root the proof is so simple, that we
offer an elementary derivation of it in Appendix A. Any reader who is unfamiliar
with the result, or who is under any misapprehension that it is a difficult one, is
strongly urged to begin here.32
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Riley and Samuelson's proof is less direct than that of Appendix A, but is a
simpler read than Myerson's, and Riley and Samuelson give more illustrations.
However, Myerson offers the most general treatment, and also develops the
mathematics used to prove revenue equivalence a little further to show how to
derive optimal auctions (that is, auctions that maximise the seller's expected
revenue) for a wide class of problems (see below).
Although this work was a remarkable achievement, there seemed to be little

relationship to traditional price theory, which made the subject a difficult one for
many economists. Bulow and Roberts (1989) greatly simplified the analysis of
optimal auctions by showing that the problem is, in their own words, `essentially
equivalent to the analysis of standard monopoly third-degree price discrimination.
The auctions problem can therefore be understood by applying the usual logic of
marginal revenue versus marginal cost.'
In particular, it is helpful to focus on bidders' `marginal revenues'. Imagine a

firm whose demand curve is constructed from an arbitrarily large number of
bidders whose values are independently drawn from a bidder's value distribution.
When bidders have independent private values, a bidder's `marginal revenue' is
defined as the marginal revenue of this firm at the price that equals the bidder's
actual value. Bulow and Roberts follow Myerson to show that under the
assumptions of the revenue equivalence theorem the expected revenue from an
auction equals the expected marginal revenue of the winning bidder(s).
Bulow and Klemperer (1996)33 provide a simpler derivation of this result that

also generalises its application.34 We give an elementary exposition of this
material in Appendix B.
So in an optimal auction the objects are allocated to the bidders with the highest

marginal revenues, just as a price-discriminating monopolist sells to the buyers
with the highest marginal revenues (by equalizing the lowest marginal revenues
sold to across different markets). And just as a monopolist should not sell below
the price where marginal revenue equals marginal cost, so an auctioneer should
not sell below a reserve price set equal to the value of the bidder whose marginal
revenue equals the value to the auctioneer of retaining the unit. (The marginal
revenue should be set equal to zero if the auctioneer, or monopolist, is simply
maximizing expected revenues.)
These principles indicate how to run an optimal auction in the general case.35

Furthermore, when bidders are symmetric (that is, when their signals are drawn from
a common distribution), any `standard' auction sells to the bidder with the highest
signal. Therefore, if bidders with higher signals have higher marginal revenues Ð in
the private-value context this is just equivalent to the usual assumption that a
monopolist's marginal revenue is downward sloping36 Ð then the winning bidder has
the highest marginal revenue. So under the assumptions of the revenue equivalence
theorem, and if bidders with higher signals have higher marginal revenues, all the
standard auctions are optimal if the seller imposes the optimal reserve price.
Much of auction theory can be most easily understood by thinking in terms of

marginal revenues and the relationship to the conditions for revenue equivalence;
this paper will emphasise this perspective.
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5. Risk aversion

It is easy to see how risk-aversion affects the revenue equivalence result: in a
second-price (or an ascending) auction, risk-aversion has no effect on a bidder's
optimal strategy which remains to bid (or bid up to) her actual value.37 But in a
first-price auction, a slight increase in a player's bid slightly increases her
probability of winning at the cost of slightly reducing the value of winning, so
would be desirable for a risk-averse bidder if the current bidding level were
optimal for a risk-neutral bidder. So risk-aversion makes bidders bid more
aggressively in first-price auctions. Therefore, since the standard auctions were
revenue equivalent with risk-neutral bidders, a risk-neutral seller faced by risk-
averse bidders prefers the first-price auction to second-price sealed-bid or
ascending auctions.
What if the auctioneer is risk-averse but the buyers are risk-neutral? Observe

that the winner pays a price set by the runner-up in a second-price or ascending
auction and, by revenue equivalence, must bid the expectation of this price in a
first-price auction. That is, conditional on the winner's actual information, the
price is fixed in the first-price auction, and random but with the same mean in the
second-price auction. So also unconditional on the winner's information, the price
is riskier (but with the same mean) in the second-price auction. So a risk-averse
seller prefers the first-price auction to the second-price sealed-bid auction and, for
a similar reason, prefers the second-price sealed-bid auction to an ascending open
auction.38

In another of the crucially important papers of the early 1980s, Maskin and
Riley (1984) develop and generalise these results and then go on to consider the
design of optimal auctions when the seller is risk-neutral and the buyers are risk-
averse.39

However, although first-price auctions lead to higher prices with risk-averse
buyers, this does not mean risk-averse buyers prefer second-price or ascending
auctions since, as noted above, prices in the first-price auction are less risky.
Matthews (1987) takes up the buyer's viewpoint; in fact, buyers are just indifferent
with constant absolute risk aversion and tend to prefer the first-price auction if
they have increasing absolute risk aversion or `affiliated values' (see next
Section).40 These results can be developed by generalising the revenue equivalence
result to a `utility equivalence' result that applies for risk-averse bidders.41

6. Correlation and affiliation

Another crucial assumption in the basic analysis of optimal auctions is that each
bidder's private information is independent of competitors' private information.
We now relax this assumption while reverting to the assumption of risk-neutrality.
Section 7 of Myerson's extraordinary (1981) paper provides a very simple and

instructive example showing that if bidders' private information is correlated, then
the seller can construct a mechanism that yields for herself the entire social surplus
that would be feasible if bidders' information were fully public! The mechanism
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offers each bidder a schedule of bets among which she is required to choose if she
is to participate. For any given private information, the best of these bets will yield
her exactly zero surplus in expectation, and by choosing it she is revealing her type
so that her surplus can be fully and efficiently extracted. We give an example in
Appendix C.
Cremer and McLean (1985) show that Myerson's result is very general,

although it does seem to rely heavily on assumptions such as risk-neutrality of
both the bidders and the seller, common knowledge of the distributions from
which bidders' signals are drawn, the inability of bidders to collude, and the
ability of the seller to credibly and costlessly communicate and enforce the
auction's results (often including extracting large payments from losing bidders).42

Since the `optimal mechanisms' seem unrealistic in this environment, how do
standard auctions compare? Milgrom and Weber's remarkable (1982a) paper
addresses this question in the context of developing a general theory of auctions with
affiliated information. (Very roughly, bidders' signals are affiliated if a high value of
one bidder's signal makes high values of other bidders' signals more likely.43) Since
this paper is both very important in the literature and quite challenging for many
readers, we give an elementary exposition of the main results in Appendix C, by
starting from the revenue equivalence argument developed in Appendix A.
The main results are that ascending auctions lead to higher expected prices than

sealed-bid second-price auctions, which in turn lead to higher expected prices than
first-price auctions.44 The intuition is that the winning bidder's surplus is due to her
private information. The more the price paid depends on others' information (the
price depends on all other bidders' information in an ascending auction with
common-value elements, and on one other bidder's information in a second-price
sealed-bid auction), the more closely the price is related to the winner's information,
since information is affiliated. So the lower is the winner's information rent and
hence her expected surplus, and so the higher is the expected price.
For the same reason, if the seller has access to any private source of

information, her optimal policy is to precommit to revealing it honestly. The
general principle that expected revenue is raised by linking the winner's payment
to information that is affiliated with the winner's information, is known as the
Linkage Principle.45

One of the more striking results of the basic analysis of optimal auctions is that
if bidders have independent private values, the seller's reserve price is both
independent of the number of bidders, and also well above the seller's cost. The
reason is that the optimal reserve price is where marginal revenue equals the
seller's cost, and a bidder's marginal revenue is independent of other bidders'
marginal revenues when values are independent. However, if valuations are
affiliated, more bidders implies more certainty about any one bidder's valuation
conditional on other bidders' information, hence flatter marginal revenue curves,
so a far higher proportion of bidders have marginal revenues in excess of the
seller's cost.46 So the reserve price must be set lower. Levin and Smith (1996a)
show that the optimal reserve price converges to the seller's true value as the
number of bidders grows.
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7. Asymmetries

Along with risk-neutrality, and independent private information, a third crucial
assumption of the revenue equivalence theorem is that buyers' private values or
signals were drawn from a common distribution. We now discuss relaxing the
symmetry assumption.47

7.1. Private value differences

Myerson (1981) and Bulow and Roberts (1989) showed that a revenue-
maximizing auction allocates objects to the bidder(s) with the highest marginal
revenue(s) rather than to those with the highest value(s). Recall from the standard
theory of demand that a buyer on a given demand curve has a higher marginal
revenue than any buyer with the same valuation on a demand curve that is higher
everywhere due to being shifted out by a fixed amount horizontally. So a revenue-
maximising auctioneer typically discriminates in favour of selling to bidders
whose values are drawn from lower distributions, that is, `weaker' bidders.
McAfee and McMillan (1989) develop this point in a procurement context.48

Since in a first-price auction a bidder whose value is drawn from a weaker
distribution bids more aggressively (closer to her actual value) than a bidder from a
stronger distribution,49 a first-price auction also discriminates in favour of selling to
the weaker bidder, in contrast to a second-price (or ascending) auction which always
sells to the bidder with the higher valuation (in a private-values model). So it is
plausible that a first-price auction may be more profitable in expectation, even
though less allocatively efficient, than a second-price auction, when all the
assumptions for revenue equivalence except symmetry are satisfied.50 This is in fact
often, though not always, the case. The large variety of different possible kinds of
asymmetries makes it difficult to develop general results, but Maskin and Riley
(1999) make large strides.51 A very useful brief discussion in Maskin and Riley (1985)
summarises the situation as `roughly speaking, the sealed-bid auction generates more
revenue than the open [second-price] auction when bidders have distributions with
the same shape (but different supports), whereas the open auction dominates when,
across bidders, distributions have different shapes but approximately the same
support.'
Maskin and Riley (1999) also show quite generally that `strong' buyers prefer

the second-price auction, whereas `weak' buyers prefer the first-price auction. This
may be important where attracting buyers to enter the auction is an important
consideration; see below.

7.2. Almost-common-values

If valuations have common-value components the effects of asymmetries can be
even more dramatic. If one player has a small advantage, for example, a slightly
higher private value in a setting that is close to pure-common-values, that player
will bid a little more aggressively. This strengthens the opponent's `winner's curse'
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(since winning against a more aggressive competitor is worse news about the
actual value of a common value object), so the opponent will bid a little less
aggressively in an ascending auction, so the first player's winner's curse is reduced
and she can bid a little more aggressively still, and so on. Klemperer (1998)
discusses a range of contexts in which, in consequence, an apparently small edge
for one player translates into a very large competitive advantage in an ascending
auction. The earliest specific example in the literature is Bikhchandani's (1988)
demonstration that a small reputation advantage can allow a bidder to almost
always win a pure-common-value auction, and that this reputational advantage
may be very easy to sustain in a repeated context. Bulow, Huang and Klemperer
(1999) demonstrates that having a small toehold can be an enormous advantage in
a otherwise pure-common-values takeover battle.52

The original stimulus for all this work is Milgrom (1981)53 which analyses
equilibria in ascending auctions and shows that there is a vast multiplicity in the
pure-common values case, ranging from the symmetric equilibrium to equilibria in
which an arbitrarily chosen player always wins. Later work shows that adding
some `grit' into the model, whether it be a small private-value component, a small
reputation component, or a small ownership component, etc., selects one of these
equilibria, but which equilibrium is selected depends on exactly how the pure-
common-values model is perturbed. Thus an apparently small change in the
environment can greatly increase a player's chance of winning.
Since the winner of an `almost-common-value' ascending auction may therefore

often have the lower signal, and so typically the lower marginal revenue,
ascending auctions may be very unprofitable in this context.
By contrast, in a first-price auction a small change to the symmetric model

generally results in a small change to the (unique) symmetric equilibrium, so the
bidder with the higher signal hence, typically, higher marginal revenue continues
to (almost always) win. Thus the first-price auction is almost optimal for a
revenue-maximizing auctioneer, and is much more profitable than an ascending
auction, provided bidders with higher signals have higher marginal revenues.54

The effects of almost-common-values in ascending auctions are most extreme
where there are also entry or bidding costs (see Section 8) in which case the
disadvantaged bidder(s) may not enter at all, leaving the autioneer to face a single
bidder, see Klemperer (1998).

7.3. Information advantages

Another important form of asymmetry is that one player may have superior
information. Here, again, Milgrom (1981)55 is critically important, showing that
in a pure-common-value setting a bidder with no private information makes no
profits in equilibrium in a second-price auction. Milgrom and Weber (1982b)
shows the same result (and much more) in the first-price context. The latter paper
builds in part on work published later in Engelbrecht-Wiggans, Milgrom and
Weber (1983).
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8. Entry costs and the number of bidders

8.1. Endogenous entry of bidders

In practical auction design, persuading bidders to take the time and trouble to
enter the contest is a major concern, so we now endogenise the number of bidders
and ask how it depends on the selling mechanism chosen.56

The first key result is that in a private-value setting that satisfies the revenue-
equivalence assumptions except for the presence of entry costs, bidders make the
socially-correct decision about whether or not to enter any standard auction if the
reserve price is set equal to the seller's valuation. To see this, note that the
expected social value of the bidder being present is the probability she wins the
auction times the difference between her value and the runner-up's value. But this
is exactly the bidder's expected profit after entering a second-price auction, and so
also, using revenue equivalence, in a very wide class of auctions including all
standard auctions.
Furthermore, in a free-entry equilibrium in which ex-ante identical bidders

enter to the point at which each expects zero profits net of the entry cost (and each
finds out her private value subsequent to the entry decision57), the seller obtains
the entire social surplus in expectation. So it also follows that running any
standard auction with a reserve price equal to the seller's cost is revenue
maximising for the seller.58

These results can be found in, for example, Levin and Smith (1994)59 in a
model in which bidders simultaneously make symmetric mixed-strategy entry
decisions so that their expected profits are exactly zero. The results apply
whether or not bidders observe how many others have chosen to enter before
bidding in the auction, since revenue equivalence applies across and between
both cases.60 The results also apply if entry is sequential but the number of firms
is treated as a continuous variable so that entrants' expected profits are exactly
zero. In other cases the fact that the number of entrants must be an integer
means that the marginal entrant's expected profits may exceed zero, but
Engelbrecht-Wiggans (1993) shows that this makes very little difference: the
seller optimally adjusts the reserve price and=or sets an entry subsidy or fee that
sucks up all the entrants' surplus while altering the number of entrants by at
most one.61, 62

In pure-common-value auctions, in marked contrast, the socially optimal
number of bidders is obviously just one. Furthermore, Matthews (1984) shows
that expected seller revenue can also be decreasing in the number of bidders in
non-pathological pure-common-value settings, and Bulow and Klemperer (1999b)
provide intuition for why this is natural by using marginal-revenue analysis.63 So
both socially and privately, entry fees and reservation prices are much more
desirable in common-value contexts. See Levin and Smith (1994) and also Harstad
(1990).
Where bidders are asymmetric ex-ante, an auctioneer may wish to run an ex-

post inefficient auction to attract weaker bidders to enter the contest. Thus
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Gilbert and Klemperer (forthcoming) show that committing to ration output (that
is, selling at a fixed price at which demand exceeds supply) may be more profitable
than raising price to clear the market (that is, running an ascending auction that is
ex-post efficient) because it attracts more buyers into the market.64, 65

Finally, bidders can influence the number of their rivals through their own
strategic behavior. In particular, Fishman (1988) demonstrates that it can be
profitable for a bidder to commit to a high bid (for example, by making a pre-
emptive `jump' bid in a takeover battle) to deter potential rivals from incurring the
cost required to enter the contest.66

8.2. The value of additional bidders

Bulow and Klemperer (1996) show that when bidders are symmetric, an
additional bidder is worth more to the seller in an ascending auction than the
ability to set a reserve price, provided bidders with higher signals have higher
marginal revenues. They then demonstrate that, very generally in a private-value
auction, and also in a wide class of common-value settings,67 a simple ascending
auction with no reserve price and N� 1 symmetric bidders is more profitable than
any auction that can realistically be run with N of these bidders.68 So it is typically
worthwhile for a seller to devote more resources to expanding the market than to
collecting the information and performing the calculations required to figure out
the best mechanism.

8.3. Information aggregation with large numbers of bidders

An important strand of the auction literature has been concerned with the
properties of pure-common-value auctions as the number of bidders becomes
large. The question is: does the sale price converge to the true value, thus fully
aggregating all of the economy's information even though each bidder has only
partial information? If it does, it is then attractive to think of an auction model as
justifying some of our ideas about perfect competition.
Wilson (1977)'s important early contribution showed that the answer is `yes' for

a first-price auction under his assumptions.69 Milgrom (1981) obtained similar
results for a second-price auction (or for a (k� 1)th price auction for k objects) in
his remarkable paper that contains a range of other significant results and which
we have already mentioned in Sections 7.2. and 7.3.70

Matthews (1984) allows each bidder to acquire information at a cost. In his
model, as the number of bidders becomes large the amount of information each
obtains falls, but in such a way that the (first-price) sale price does not in general
converge to the true value.

8.4. Unknown number of bidders

Matthews (1987)71 and McAfee and McMillan (1987b) both consider auctions
when bidders with private values are uncertain about how many rivals they are
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competing with,72 and analyse how bidders' and the seller's preferences between
the number of bidders being known or unknown depend on the nature of bidders'
risk aversion and on whether bidders' signals are affiliated, etc.73

Finally, it is not hard to see that under the usual assumptions (risk-neutrality,
independent signals, symmetry, etc.), the standard argument for revenue
equivalence applies independent of whether the actual number of competitors is
revealed to bidders before they bid.74

9. Collusion

A crucial concern about auctions in practice is the ability of bidders to collude,
but the theoretical work on this issue is rather limited.
Robinson (1985) makes the simple but important point that a collusive

agreement may be easier to sustain in a second-price auction than in a first-price
auction. Assuming, for simplicity, no problems in coming to agreement among all
the bidders, or in sharing the rewards between them, and abstracting from any
concerns about detection, etc., the optimal agreement in a second-price auction is
for the designated winner to bid infinitely high while all the other bidders bid zero,
and no other bidder has any incentive to cheat on this agreement. But to do as
well in a first-price auction the bidders must agree that the designated winner bid
an arbitrarily small amount, while all the others bid zero, and all the others then
have a substantial incentive to cheat on the agreement.75

An important question is whether the cartel can find a mechanism that
efficiently (and incentive-compatibly) designates the winner and divides the spoils
by making appropriate sidepayments, when bidders have private information
about their own values. McAfee and McMillan (1992)'s main result is that this is
possible and can be implemented by a simple pre-auction if all the bidders in the
auction are members of the cartel and they all have private values drawn from the
same distribution. This result is very closely related to the demonstration in
Cramton, Gibbons and Klemperer (1987)76 that a partnership (for example, the
gains from a cartel) can be efficiently divided up.
McAfee and McMillan also analyse cartels that contain only a subgroup of the

industry participants, and `weak cartels' that cannot make sidepayments between
members, and consider how a seller should respond to the existence of a cartel.77

Although there are many fewer formal analyses of collusion than seem merited
by the issue's practical importance, Hendricks and Porter (1989) is a very useful
informal survey of the circumstances and mechanisms facilitating collusion. They
focus especially on methods of detecting collusion.

10. Multiunit auctions

Most auction theory, and almost all of the work discussed this far, restricts
attention to the sale of a single indivisible unit. The literature on the sale of
multiple units is much less well developed, except for the case where bidders
demand only a single unit each. It is, however, the most active field of current
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research in auction theory,78 so this is probably the section of this survey that will
become obsolete most quickly.

10.1. Optimal auctions

Maskin and Riley (1989) extend Myerson's (1981) analysis of optimal auctions to
the case in which buyers have downward-sloping demand-curves, independently
drawn from a one-parameter distribution, for quantities of a homogeneous
good.79 They provide one of a number of expositions of revenue equivalence for
the multiunit case, when buyers each want no more than a single unit.
Palfrey (1983) analyses a seller's (and buyers') preferences between bundling

heterogeneous objects and selling them unbundled; he shows the seller's incentive
to bundle diminishes as the number of bidders increases. Very little progress has
been made since Palfrey's paper on the problem of determining the seller-optimal
auction for selling heterogeneous objects, but this topic is the subject of active
current research.80

10.2. Simultaneous auctions

Wilson (1979), in another of his papers that was many years ahead of its time, first
analysed share auctions Ð auctions in which each bidder offers a schedule
specifying a price for each possible fraction of the item (for example, a certain
volume of Treasury notes). He showed that in a uniform-price auction (when all
the shares are sold at the (same) price that equates the supply and demand of
shares) there are Nash equilibria that look very collusive, in that they support
prices that may be much lower than if the item were sold as an indivisible unit.
The intuition is that bidders can implicitly agree to divide up the item at a low
price by each bidding extremely aggressively for smaller quantities than her
equilibrium share so deterring the others from bidding for more.
This intuition suggests (at least) two ways of `undoing' the equilibrium. One

way is to run a discriminatory auction in which bidders pay the price they bid for
each share; bidding aggressively for small quantities is then very costly, so bidders
submit flatter demand curves which induce greater price competition at the
margin. See Back and Zender (1993), who argue that discriminatory auctions are
therefore likely to be far more profitable for a seller.81 Nevertheless, Anton and
Yao (1992) show that implicit coordination is still possible in this kind of auction
if bidders' values are non-linear in the volume purchased.82

A second way of undoing the low-price uniform-price equilibrium is to include
some randomness in demands (for example, from non-competitive bidders) or in
the seller's supply. Klemperer and Meyer (1989) take this tack and show that
sufficient supply uncertainty can reduce the multiplicity of uniform-price
equilibria to a single equilibrium that is highly competitive if bidders' values are
linear in their volumes purchased.83 They pose their model in an oligopoly setting,
or equivalently a procurement auction, and allow non-linear (but publicly-known)
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costs; the model closely corresponds to the actual operation of electricity-supply
auction markets.84

Klemperer and Meyer's model allows downward-sloping demand (in the
procurement context) hence the quantity is endogenous to the bids (even absent
demand uncertainty). Hansen (1988) considers endogenous quantity in the
winner-take-all context, and shows that not only does the auctioneer prefer a first-
price to a second-price auction (in a context where revenue equivalence would
hold if the quantity were fixed) but the first-price auction is also socially more
efficient and may even be preferred by the bidders. The intuition is that in first-
and second-price auctions the quantity traded depends on the prices bid by the
winner and the runner-up, respectively. So the first-price auction is more
productively efficient (the quantity traded reflects the winner's cost or value) and
provides greater incentive for aggressive bidding (a more aggressive bid not only
increases the probability of winning, but also increases the quantity traded
contingent on winning).

10.3. Sequential auctions

The analysis of auctions where units are sold sequentially is well developed for the
important special case in which no buyer is interested in more than one unit. In this
case, if the units are homogeneous, and under the other usual assumptions, revenue
equivalence holds whether the units are sold sequentially or simultaneously (Weber
(1983), Maskin and Riley (1989), and Bulow and Klemperer (1994)).
Thus quite complex multi-unit auctions can be solved by using revenue

equivalence to work out, at any point of the game, what players' strategies must
be to yield them the same expected payoff as if all the remaining units were
auctioned simultaneously in a simple ascending auction.
Bulow and Klemperer (1994) use the revenue equivalence theorem in this way

to solve for the dynamic price-path of a model of a stock market or housing
market; the model would be intractably hard to solve by the direct method of
writing down the first-order conditions for equilibrium in a dynamic program.
The point of the paper is that rational, strategic, traders should be very sensitive to
new information and so participate in rushes of trading activity (frenzies) that
sometimes lead to crashes in the market price. However, it is the method rather
than the specific application that deserves emphasis here.
A much simpler example is the sale of k units through k repetitions of a first-

price auction, with only the winning bid announced at each stage, to bidders with
independent private values. Here, revenue equivalence tells us that at each stage
each bidder just bids the expected (k� 1)st highest value, conditional on being a
winner and on the information revealed so far, since this is what she would pay if
all the remaining units were auctioned simultaneously in a standard ascending
auction. It is easy to see that this is a martingale, that is, the price neither rises nor
falls over time, on average.
A large contribution of Milgrom and Weber's (1982c) seminal paper is to

consider a wider class of sequential auctions (including first-price auctions, both
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with and without price-announcements, second-price auctions, and English
auctions) under more general assumptions. They show that with affiliation
and=or common-value elements the price path drifts upwards. The intuition for
the effect of affiliation is essentially that of the Linkage Principle (see Section 6).85

This paper has not previously been published, but it is a highly influential paper
that it is gratifying to be able to publish at last in The Economic Theory of
Auctions. Since it is unpolished, and the reader must beware of possible errors, we
also publish a new foreword by the authors that explains the difficulties.
Milgrom and Weber's paper left a puzzle: contrary to the discussion above, it is

more common to observe a downward drift in prices at auctions (see especially
Ashenfelter (1989)). This discrepancy has spawned a small literature attempting to
explain the `Declining Price Anomaly' (or `Afternoon Effect').86 An early example
is McAfee and Vincent (1993) who pursue the intuitive notion that risk-aversion
might drive up early prices by providing an incentive to buy early. Actually,
McAfee and Vincent's results are inconclusive; bidders use mixed strategies when
risk-aversion is of the most plausible kind, so prices need not necessarily decline.
Nevertheless, theirs is an important analysis and also provides an interesting
example in which bidding functions that are monotonic in value do not exist.
Weber (1983) surveys many of the issues that arise in multi-object auctions,

focusing primarily on sequential auctions. Unlike the previously-mentioned
papers in this subsection, he discusses the complex problems that arise when
bidders desire multiple units; Ortega Reichert (1968)87 had already addressed
some of these.88, 89

10.4. Efficient auctions

A main message of much of the current research on multi-unit auctions is that it is
very hard to achieve efficient outcomes.90 This is in contrast to the single-unit
case, in which Maskin (1992) showed under a broad class of assumptions that an
ascending auction is efficient if bidders' private signals are single-dimensional,
even with asymmetries among bidders and common-value components to
valuations.
A Vickrey auction is efficient in private-value multi-unit contexts,91 and

Dasgupta and Maskin (1998) and Perry and Reny (1998) show how to generalize
the Vickrey mechanism to achieve efficiency in a wide variety of multi-unit
contexts if each bidder's signal is one-dimensional. But Jehiel and Moldovanu
(1998) obtain impossibility results showing that efficiency is not usually possible
when each bidder's information signal is multidimensional, as is natural when
there are multiple heterogeneous goods.
Ausubel (1998) and Ausubel and Cramton (1998) emphasise the inefficiencies of

standard auctions even in the sale of homogeneous objects. In particular, an
ascending multi-unit auction (where the sale price equals the first price at which
the number of units demanded falls to the supply available) gives a large bidder an
incentive to reduce her demand early in order to pay less for those units she does
win.92
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11. Royalties, incentives contracts, and payments for quality

It is usually assumed that bidders' payments can depend only on the bids. But if
the winner's value can be observed ex-post, even imperfectly, the seller can do
better by making the winner's payment depend on this observation. This removes
some of the winner's information rent, and can be interpreted as an application of
the Linkage Principle.
Riley (1988) makes this point in a general context. As a practical application,

the quantity of oil extracted may be a noisy signal of an oilfield's profitability;
Riley shows that the seller's expected revenue can then be increased either by
setting per-unit royalties that the winner must pay in addition to the fee bid, or by
having bidders bid on the royalty rate they are willing to pay rather than on fixed
fees.93, 94

Similarly, Laffont and Tirole (1987) analyze a procurement auction in which
the winner will subsequently invest in unobserved effort to reduce its cost. The
auctioneer observes the final realised cost. Auctioning an incentive contract with a
cost-sharing provision gets a better price for the auctioneer by reducing the
difference between firms' valuations of winning, so reducing the winner's rent (just
like a royalty), even though it weakens the incentives for effort to reduce costs.
One of Laffont and Tirole's key results is a `separation property': the optimal
contract, and hence the winner's final cost, is similar to that which would apply if
there were only a single firm and so no bidding competition, while the auction
awards the contract to the firm that announces the lowest expected cost.95

Che (1993) uses a version of Laffont and Tirole's model to analyse a
multidimensional auction in which firms bid on both quality and price in a
procurement auction. The auctioneer uses a scoring rule to evaluate the bids. It is
no surprise that a revenue equivalence result applies, for example, between `first-
score' and `second-score' auctions. Che also shows that it is optimal for the
auctioneer to precommit to a scoring rule that underrewards quality relative to her
real (ex-post) preferences.96 Note that although this is a very elegant model of
multidimensional bidding, firms only differ according to a one-dimensional type.97

12. Double auctions, etc

12.1. Double auctions

Standard auction theory assumes a single seller controls the trading mechanism,
while many buyers submit bids. In a double auction, buyers and sellers are treated
symmetrically with buyers submitting bids and sellers submitting asks. The
double-auction literature thus provides a link to the bargaining literature. We
emphasise here models that are closely related to simple, static, standard (one-
sided) auctions.98

The seminal model is the k-double auction of Chatterjee and Samuelson (1983)
in which a single buyer and single seller submit a bid b and ask s, respectively, and
if the bid exceeds the ask a trade is consummated at the price kb� (1ÿ k)s, where
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0Å kÅ 1. Of course, both buyer and seller have incentive to misrepresent their true
values, so trades that would be efficient are not necessarily made.
Wilson (1985) first studied the generalisation to the multi-buyer=multi-seller case

in which each agent can trade at most one indivisible unit and, given the bids and
asks, the maximum number of feasible trades are made at a price a fraction k of the
distance between the lowest and highest feasible market clearing prices. The key
result is that a double auction is efficient, in the sense that with sufficiently many
buyers and sellers there is no other trading rule for which, conditional on agents'
values, it is common knowledge that all agents would be better off in expectation.
Rustichini, Satterthwaite and Williams (1994) pursue the question of the extent

to which agents' equilibrium bids and asks misrepresent their actual values. The
answer is that in large markets the maximum misrepresentation is small, and
hence the extent of the inefficiency caused by strategic behavior is also small.99

Some intuition is provided by McAfee (1989) who considers the following
simple mechanism: if N trades are feasible, let the (Nÿ 1) highest value buyers buy
at the Nth highest buyer's value while the (Nÿ 1) lowest value sellers sell at the Nth

lowest seller's value. Now, just as in a second-price auction, all agents report their
actual values as dominant strategies, and only the least valuable feasible trade is
foregone, and the mechanism also makes money. The fact that this mechanism is
obviously so efficient (and McAfee shows how a slightly more complicated
scheme does even better) makes it less surprising that other double auction
mechanisms are also very efficient.

12.2. Related two-sided trading mechanisms

Related important work includes Myerson and Satterthwaite's (1983) path-breaking
general analysis of mechanism design for bilateral trading. They use techniques
similar to those of Myerson (1981), and the reader is similarly urged to study the
reinterpretation in terms of marginal revenues and marginal costs given in Bulow
and Roberts (1989).100 Myerson and Satterthwaite show that the symmetric version
(k� 1

2) of Chatterjee and Samuelson's two-player double auction is in fact an optimal
mechanism, in that it maximises the expected gains from trade, in the case that the
agents' values are independently drawn from identical uniform distributions.101

This paper also demonstrates that ex-post efficiency cannot be achieved in
bargaining between a seller who initially owns the asset and a buyer with no prior
ownership, when there is private information about valuations. However, Cramton,
Gibbons and Klemperer (1987) show that ex-post efficiency can be guaranteed (that
is, is consistent with incentive compatibility and individual rationality) when the
asset to be traded is jointly owned: the reason is that traders' incentives to
misrepresent their values are reduced by their uncertainty about whether they will
be buyers or sellers. Cramton, Gibbons and Klemperer exhibit one bidding game
that achieves efficiency; revenue equivalence means that other auction forms can
achieve the same outcome.102 This paper explains why ex-post efficient collusion in
an auction (that is, efficiently dividing the joint spoils by designating a winner and
making appropriate side payments) is possible (see Section 9).
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13. Other topics

This section considers some other important topics, each of which is represented
by a paper in The Economic Theory of Auctions.

13.1. Budget constraints

An important reason why revenue equivalence may fail in practice is that bidders
may face budget constraints. To see why, consider the standard model in which
revenue equivalence applies and bidders have independent private values �i, but
let bidder i have budget constraint bi. Then in a second-price auction i bids exactly
as if she had value xi�min(bi, �i) but no budget constraint, so by the revenue
equivalence theorem103 the expected revenue equals that from a first-price auction
in which bidders have values xi and no budget constraints, or equivalently a first-
price auction in which bidders have values xi and budget constraints xi. It is
intuitive that this is less expected revenue than from a first-price auction in which
bidders have values �i(åxi) and budget constraints bi(åxi). So first-price auctions
are more profitable than second-price auctions. This and similar results are
obtained in Che and Gale (1998).
It is also intuitive that auction forms that take payments from losers, such as

lotteries and `all-pay' auctions, can be more profitable still in the presence of
budget constraints.104 Budget constraints are also very important in sequential
multi-unit auctions, where they provide incentives to, for example, try to reduce
opponents' budgets in early sales in order to lower subsequent sale prices. This is
the subject of an important paper in the literature on experimental auctions,
Pitchik and Schotter (1988), and is also an area of active research.105

13.2. Externalities between bidders

Jehiel and Moldovanu (1996) make an important extension to the theory by
incorporating the possibility that a potential buyer cares who buys the object for
sale in the event that she does not. This might be the case, for example, when a
patent is auctioned to oligopolistic competitors, or when selling nuclear
weapons.106 Jehiel and Moldovanu's paper raises many of the issues, including
demonstrating in the context of first-price auctions with complete information
that there may be multiple equilibria, and hence that a potential bidder may do
better to avoid an auction rather than show up and risk galvanising an enemy to
win. Jehiel, Moldovanu and Stacchetti (1996) address the issue of constructing
optimal mechanisms, and Caillaud and Jehiel (1998) show that externalities
between bidders tend to make collusion harder.107

13.3. Jump bidding

An ascending auction is usually modelled as a continuous process in which each
successive bid is an arbitrarily small increment above the previous bid. However,
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actual behaviour in, for example, takeover battles, often involves `jump bidding'
in which a bidder raises the price very substantially with a single bid.108

To understand why this might happen, consider a standard independent
private-value English auction with two symmetric players. The following
behaviour is an equilibrium: one player bids the price she would bid in a first-
price sealed-bid auction; the second player than infers the first player's actual
value and bids that actual value if her own value is higher, but quits the auction
otherwise.109 So the player with the actual higher value wins, but the first player
pays the first-price auction price when she wins, while the second player pays the
second-highest valuation when she wins. Since the higher-value bidder always
wins, the outcome is revenue-equivalent to that of the standard continuously
ascending model in which the winner always pays the second-highest valuation.
And since the first bidder may fear that the second may misunderstand the
equilibrium and bid up the price when she will anyway lose, it is not the most
natural equilibrium in the simple independent private-value model. But with
affiliation, bidders prefer first-price sealed-bid auctions to continuous ascending
auctions, as shown in Milgrom and Weber (1982a),110 so the first-price features of
this equilibrium are attractive to bidders, and Avery (1998) demonstrates that we
may therefore expect a `jumping' equilibrium to be played.
If there are costs to making each bid, then jump bidding arises for similar

reasons, even with independent private values, see Daniel and Hirshleifer (1995).

13.4. The war of attrition

The War of Attrition is no more than a special kind of auction in which all the
bidders pay, and keep on paying at some specified rate, until they quit competing
for the prize. (It is irrelevant to the analysis that in most practical contexts the
payments are social waste, rather than collected by an auctioneer.) Important early
contributions were made by Riley (1980), Bliss and Nalebuff (1984), and Fudenberg
and Tirole (1986), among others. Bulow and Klemperer (1999a) extends the analysis
to the many-player case, and makes the auction-theoretic underpinnings most
explicit, including several appeals to revenue equivalence arguments.111, 112

13.5. Competing auctioneers

McAfee (1993) examines a model in which many sellers compete for buyers. In
equilibrium, in an infinitely large market, each seller holds an efficient auction
including setting an efficient reserve price. Thus McAfee and ensuing papers
endogenise the use of auctions, and so address the question of when we should
expect auctions to arise.113

14. Testing the theory

This paper and its companion book is concerned with the theory of auctions, but
it would be remiss to exclude any discussion of how well it is supported by data.
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The Economic Theory of Auctions therefore concludes with two recent surveys, one
of the empirical evidence, Laffont (1997)114, and one of the experimental evidence,
Kagel (1995).

15. Conclusion

Auction theory has been among the most successful branches of economics in
recent years. The theory has developed rapidly, and is increasingly being looked to
for assistance in practical applications. Testing auction-theoretic models is seen as
one of the brightest spots in applied economics. Much research remains to be
done, especially perhaps on multi-unit auctions, and much research is currently
being done. But the foundations of the subject, as presented in many of the papers
described here, seem secure.

Appendix A: The revenue equivalence theorem

For simplicity, we focus on the basic `independent private values' model, in which
n bidders compete for a single unit. Bidder i values the unit at �i, which is
private information to her, but it is common knowledge that each �i is
independently drawn from the same continuous distribution F(�) on [�; Y� ] (so
F (� )� 0; F (Y�)� 1) with density f (�). All bidders are risk-neutral.
Consider any mechanism (any single-stage or multi-stage game) for allocating

the unit among the n bidders. For this mechanism, and for a given bidder i, let
Si(�) be the expected surplus that bidder i will obtain in equilibrium from
participating in the mechanism, as a function of her type, which we now denote by
�, rather than �i, for notational convenience. Let Pi (�) be her probability of
receiving the object in the equilibrium. So Si (�)� �Pi (�)ÿE (payment by type �
of player i).
The following equation is the key:

Si (�)åSi (~�)� (�ÿ ~�)Pi (~�). (1)

The right-hand side is the surplus that player i would obtain if she had type � but
deviated from equilibrium behaviour, and instead followed the strategy that type
~� of player i is supposed to follow in the equilibrium of the game induced by the
mechanism. That is, if type � exactly mimics what type ~� would do, then � makes
the same payments and wins the object as often as ~� would. So � gets the same
utility that ~� would get (Si (~�)), except that in states in which ~� would win the
object (which happens with probability Pi (~�)) type � values the object at (�ÿ ~�)
more than ~� does, and so � obtains an extra (�ÿ ~�) Pi (~�) more surplus in all. In an
equilibrium, � must prefer not to deviate from equilibrium behaviour, so the left-
hand side must (weakly) exceed the right-hand side.
So, since type � mustn't want to mimic type �� d�, we have

Si (�)åSi (�� d�)� (ÿd�)Pi (�� d�) (2)
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(this is just (1) with ~� substituted by �� d�), and since �� d� mustn't want to
mimic type � we have

Si (�� d�)åSi (�)� (d�)Pi (�). (3)

Reorganising (2) and (3) yields

Pi (�� d�) æ
Si (�� d�)ÿ Si (�)

d�
æ Pi (�)

and taking the limit as d�! 0 we obtain115

dSi

d�
� Pi (�): (4)

Integrating up,

Si (�)� Si (� )�
� �
x� �

Pi (x)dx: (5)

Equation (5) gives us a picture like Figure 1.
At any type Ã� the slope of the surplus function is Pi ( Ã�), so if we know where the

surplus function starts (that is, know Si (� )) we know the entire picture.
Now consider any two mechanisms which have the same Si (�) and the same

Pi (�) functions for all � and for every player i. They have the same Si (�) functions.
So any given type, �, of player i makes the same expected payment in each of the

Figure 1. Bidder i 's expected surplus as a function of her type.
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two mechanisms (since Si (�)� �Pi (�)ÿE(payment by type � of player i), since the
bidder is risk-neutral). This means i's expected payment averaged across her
different possible types, �, is also the same for both mechanisms. Since this is true
for all bidders, i, the mechanisms yield the same expected revenue for the
auctioneer.116, 117

This is the Revenue Equivalence Theorem. There are many different statements
of it, but they all essentially give the results of the preceding paragraph in a more
or less special form.
In particular any mechanism which always gives the object to the highest-value

bidder in equilibrium (all the standard auction forms do this) has Pi (�)� (F (�))nÿ 1
(since a bidder's probability of winning is just the probability that all the other
(nÿ 1) bidders have lower values then she does), and many mechanisms (including
all the standard ones) give a bidder of the lowest feasible type no chance of any
surplus, that is, Si(�)� 0, so all these mechanisms will yield the same expected
payment by each bidder and the same expected revenue for the auctioneer.
Notice that nothing about this argument (except the actual value of Pi (�)) relied

on there being only a single object. Thus the theorem extends immediately to the
case of k> 1 indivisible objects being sold, provided bidders want no more than
one object each; all mechanisms that give the objects to the k highest-value bidders
are revenue-equivalent. So we have:

Revenue Equivalence Theorem (Private-Value Case) Assume each of n risk-
neutral potential buyers has a privately-known value independently drawn from
a common distribution F(�) that is strictly increasing and atomless on [�; Y� ].
Suppose that no buyer wants more than one of the k available identical
indivisible objects. Then any auction mechanism in which (i) the objects always
go to the k buyers with the highest values, and (ii) any bidder with value �
expects zero surplus, yields the same expected revenue, and results in a buyer
with value � making the same expected payment.

It is not hard to extend the result to the general (common- and=or private-
value) case, in which each buyer, i, independently receives a signal ti drawn from
[ t; ^t ] and each bidder's value Vi (t1, ..., tn) depends on all the signals.118 A more
general statement of the theorem is then exactly the statement above, but with
`signal' substituted for `value', and t; t, and ^t substituted for �, �, and Y�,
throughout.

Application to computing bidding strategies

Again we focus, for simplicity, on the single-object private-value case.
One of the mechanisms satisfying the Revenue Equivalence Theorem is

the ascending auction, in which the expected payment of a bidder of type �
is just Pi (�) times the expectation of the highest of the remaining (nÿ 1)
values conditional on all these values being below �. Since the density of the
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highest of (nÿ 1) values is (nÿ 1) f (�)(F (�))nÿ 2, this last expectation can be
written as ��

x� �
x(nÿ 1) f �x)(F (x))nÿ 2dx

��
x� �

(nÿ 1) f �x)(F (x))nÿ 2dx

which, after integrating the numerator by parts,119 yields

�ÿ

��
x� �

(F (x))nÿ 1dx

(F (�))nÿ 1
:

Since in a first-price sealed-bid auction, �'s expected payments are Pi (�) times
her bid, it follows that � bids according to

b(�)� �ÿ

��
x� �

(F (x))nÿ 1dx

(F (�))nÿ 1

in a first-price auction.
In an `all-pay' auction in which every competitor always pays her bid (but only

the highest-payer wins the object), it likewise follows that � must bid

b(�)� (F (�))nÿ 1�ÿ
��
x� �

(F (x))nÿ 1dx:

Computing the bidding strategies this way is somewhat easier than solving for
them directly in these cases.120, 121 In other cases, see, for example, Bulow and
Klemperer (1994)122 it is very much easier.123

Appendix B: Marginal revenues

This Appendix develops the basics of the `marginal revenue' approach to auctions.
We begin by following Bulow and Klemperer (1996)124 to show, very generally,

that the expected revenue from an ascending auction equals the expected marginal
revenue of the winning bidder.
Figure 2 plots value, �, against 1ÿF (�) for bidder i. We can interpret this as a

`demand curve' because bidder i's value exceeds any � with probability 1ÿF (�),
so if a monopolist faced the single bidder, i, and set a take-it-or-leave-it offer of
price Ã�, the monopolist would make a sale with probability 1ÿF ( Ã�), that is, the
monopolist's expected quantity of sales would be q( Ã�)� 1ÿF ( Ã�).
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Figure 2 also shows a `marginal revenue curve', MR(�), constructed from the
demand curve in exactly the usual way.125 Note that at `price' Ã� the monopolist's
expected revenues can be computed either as the horizontally-shaded rectangle
Ã� � [1ÿF( Ã�)], or as the vertically-shaded area under the `marginal revenue' curve
MR(�) up to `quantity' 1ÿF( Ã�). That is, just as in standard monopoly theory,
the monopolist's revenues can be computed either as price times quantity, or as
the sum of the marginal revenues of all the units sold. (Mathematically, we can
write Ã� � [q( Ã�)]� � q( Ã�)

q � 0 MR(� (q))dq.126)
Now imagine bidder i is the winner of the ascending auction. Let Ã� be the actual

value of the second-highest bidder. So the actual price in the auction equals Ã�. But
the result of the previous paragraph tells us that Ã� equals the average level of the
marginal revenue curve between 0 and q( Ã�). (Mathematically, we have Ã��( 1=
q( Ã�))

� q( Ã�)
q � 0 MR(� (q))dq.) That is, Ã� equals the average value of i's marginal

revenue, conditional on i's value exceeding Ã�. But what we know about i's value is
just that it exceeds Ã�, because i won the auction. So for any actual second-highest
value Ã�, the price, and hence the actual revenue, equals the expected marginal
revenue of the winner. So the expected revenue from an ascending auction equals the
expected marginal revenue of the winning bidder.
Observe that the result is very general for ascending auctions. Nothing in the

argument relies on bidders' private values being independent, nor on bidders being
risk-neutral, nor on their values being drawn from a common distribution. It is also
not hard to check that the argument extends directly to the general (common- and=
or private- value) case. (See Bulow and Klemperer (1996) for full details.)

Figure 2. `Demand' and `Marginal Revenue' curves for bidder with value, �, drawn from F(�).
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Obviously the result also extends to any auction that is revenue equivalent to
the ascending auction. Noting the conditions for revenue equivalence (see
Appendix A) it follows that127 if the bidders are risk-neutral and their information
signals are independent, the expected revenue from any standard auction equals the
expected marginal revenue of the winning bidder.

Alternative, algebraic, proof

For the risk-neutral, independent, symmetric, private-value case we can
alternatively obtain the result using the results (and notation) of Appendix
A:128 Bidder i's expected payment to the auctioneer equals i's expected gross value
received from the auction, �Pi (�), less her expected surplus, Si (�). So the
auctioneer's expected receipts from i are� Y�

�� �
(�Pi (�)ÿ Si (�)) f ��)d�:

Substituting for Si (�) using equation (5) from Appendix A yields� Y�
�� �

�Pi (�)f ��)d�ÿ
� Y�
�� �

f ��)
��
x� �

Pi (x)dxd�ÿ
� Y�
�� �

Si (� )f ��)d�;

and integrating the second term by parts129 yields

� Y�
�� �

Pi (�)f ��) �ÿ 1ÿ F (�)

f ��)

24 35 d�ÿ Si (� ):

Define bidder i's `marginal revenue' if she has value � to be
MRi (�)� [�ÿ (1ÿF (�))=f (�)]; following the discussion of Figure 2, above, this
corresponds to thinking of � as `price', p, and of 1ÿF(�) as `quantity', q, hence
marginal revenue� d( pq)=dq� p� (q=(dq=dp))� �� (1ÿF(�))=(ÿf (�)). Then,
assuming Si (� )� 0, as is the case for any standard mechanism (see Appendix
A), the auctioneer's receipts from all n bidders are

Xn
i� 1

� Y�
�� �

Pi (�) f ��)MRi (�)d�

�
Xn
i� 1

E�i [P(�i)MRi(�i)]

in which, for convenience, we changed the dummy variable from � to �i in the last
expression. This expression equals the expected marginal revenue of the winning
bidder. To see this, it is helpful to write PÄi (�1, ..., �n) as the probability that i wins
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as a function of all bidders' signals (that is, PÄi (�1, ..., �n)� 1 if i is the winner,
PÄi (�1, ..., �n)� 0 otherwise). Then

Pi (�i)� E�1; ...; � iÿ1; � i�1;...; �n [
~Pi (�1; . . .; �n)]

so expected total receipts can be written

E�1; ...; �n
Xn
i� 1

MRi (�i) ~Pi (�1; . . .; �n)

24 35
which equals the expected marginal revenue of the winning bidder, since the term
in square brackets is exactly the marginal revenue of the winner. If there is no sale
for some realisation of �1, ..., �n, then the term in square brackets equals zero, so it
is as if there was a winner with marginal revenue equal to zero.
So an auction that always sells to the bidder with the highest marginal

revenue, except makes no sale if no bidder's marginal revenue exceeds zero,
will maximise expected revenues. But with symmetric bidders, any standard
auction will sell to the highest-value bidder. So if higher values imply higher
marginal revenues, then any standard auction together with reserve price pr
such that MR( pr)� 0 (to prevent any sale if all bidders have values below pr,
hence negative marginal revenues) maximises the auctioneer's expected
revenues.130

Note also that this approach generalizes easily to bidders drawn from different
distributions, and to the general (common and=or private-value) case, but the
risk-neutrality and independence assumptions are important, as they are for the
revenue equivalence theorem.

Appendix C: Affiliated signals

This Appendix analyses the relative profitabilities of the standard auction forms
when bidders' signals are affiliated,131 illustrates how an optimal mechanism can
extract the entire social surplus in this case, and provides a formal definition of
affiliation.
Loosely, two signals are affiliated if a higher value of one signal makes a higher

value of the other signal more likely, and this is true on every subspace of the
variables' domain. Thus affiliation is stronger than correlation which is just a
global summary statistic; affiliation can be thought of as requiring local positive
correlation everywhere.
Milgrom and Weber found that when signals are affiliated, the second-price

open (that is, ascending) auction raises more expected revenue than the second-
price sealed-bid auction, which in turn beats the first-price auction (assuming risk-
neutral bidders, whose signals are drawn from symmetric distributions, and whose
value functions are symmetric functions of the signals). Why?
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Begin with independent-private-value first-price auctions. Recall the intuition
for equation (4) from Appendix A,

dSi (�)

d�
� Pi(�);

that if a player has a value of �� d� instead of �, she can emulate the strategy of a
player with value � and win just as often, at the same cost, but earning an extra d�
in the probability Pi (�) event she wins.
Now consider affiliation. A player with a value of �� d� who makes the same

bid as a player with a value of � will pay the same price as a player with a value of
� when she wins, but because of affiliation she will expect to win a bit less often.
That is, her higher signal makes her think her competitors are also likely to have
higher signals, which is bad for her expected profits.
But things are even worse in a second-price affiliated private-values auction for

the buyer. Not only does her probability of winning diminish, as in the first-price
auction, but her costs per victory are higher. This is because affiliation implies that
contingent on her winning the auction, the higher her value the higher the
expected second-highest value which is the price she has to pay. Because the
person with the highest value will win in either type of auction they are both
equally efficient, and therefore the higher consumer surplus in the first-price
auction implies higher seller revenue in the second-price auction.132

How about second-price sealed-bid auctions versus ascending auctions?
Sticking to private values, these two auction types will still be identical: the
highest-valued bidder will always pay the second value. Also, with only two
bidders there is no difference between sealed and open bids even with a common-
value element and affiliation. In the open auction the player drops out when the
price reaches her value for the good conditional on the other bidder having the
same signal as her;133 in the sealed-bid version a player bids her value conditional
on the other player having the same signal.134

If there are more than two bidders in a setting with affiliation and common
values, then the ascending auction beats the sealed-bid auction: Assume there are
three potential bidders in a second-price sealed-bid auction, each of whom reveals
her signal to a trusted fourth party. The fourth party then tells the two most
optimistic bidders that they are among the top two, but doesn't reveal the third
bidder's signal. The first two will bid exactly as they would have without the
information that they are in the top two, since their bids are only relevant in this
case anyway. How will each bidder determine her bid? The marginal case in which
it would be worthwhile for a bidder to win the auction is the case where she is tied
for having the most optimistic signal. The second-highest actual bidder, whose bid
determines the price, will bid the expectation of the asset's value, assuming that
she is tied for the most optimistic assessment, and assuming there is a third
observation with the distribution to be expected if, in fact, the second bidder is
tied for the most optimistic signal.135
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However, the seller knows that contingent on the second bidder observing any
given signal and there existing a first bidder with a more optimistic observation,
the true distribution of this unknown third signal is a more optimistic one than the
second bidder will use. (For example, given that the top two bidders have values
of 30 and 40, the expectation of the third signal is higher than the expectation that
the second bidder will use in a sealed-bid auction, which conditions on the top two
values being 30 and 30.) Thus, the seller will do better on average to allow the
bidder to make her offer contingent on the observation of the third bidder, as in
the open auction where the third bidder's observation can be inferred from the
price at which she drops out.
So, with affiliation, common-value elements, and more than two symmetric,

risk-neutral, bidders, the first-price auction earns less revenue on average than the
second-price sealed-bid auction which earns less than the ascending auction. With
private values and=or only two bidders, the first-price auction still earns the least
money but the other two types are tied.
Appendix D provides some simple examples that illustrate these results.
Finally, we use a simple example to illustrate how an optimal mechanism can

extract the entire social surplus from risk-neutral bidders whose signals are not
independent. Let each of two bidders i� 1, 2 receive a private signal ti which is
either `high' or `low'. Conditional on a bidder's signal, the other bidder receives
the same signal with probability 2

3 and receives the other possible signal with
probability 1

3. Bidder i's actual value is �i (t1, t2). Now consider the following selling
mechanism: (i) ask each bidder to report her signal; call these reports tÄ1 and tÄ2
respectively, (ii) if tÄ1� tÄ2, pay each bidder an amount V, (iii) if tÄ1 6� tÄ2, require each
bidder to pay 2V to the seller, and (iv) give the object to the bidder i with the
highest value �i (tÄ1, tÄ2) at price �i (tÄ1, tÄ2). If V is sufficiently large, it is a Nash
equilibrium for each bidder to `tell the truth', that is, report tÄi� ti at stage (i), since
if the other behaves this way, parts (ii) and (iii) of the mechanism then yield
2
3(V )� 1

3(ÿ2V )� 0 to a truth-teller but yield 1
3(V )� 2

3(ÿ2V )�ÿV to a deviator.
That is, the seller has essentially forced each bidder to make a bet on the other's
signal, and the bidders can avoid losing money on these bets only by using their
private information. But once all their private information has thus been revealed,
the seller can extract the entire social surplus in part (iv) of the mechanism.136

Formal definition of affiliation

Formally, but still restricting for simplicity to the case of two bidders, signals t1
and t2 are affiliated if for all t 01> t 001 and t 02> t 002 ,

f (t 01, t
0
2) f (t

00
1 , t
00
2 )å f (t 01, t

00
2 ) f (t

00
1 , t

0
2) (6)

in which t 0i and t 00i are different possible realisations of the signals ti, i� 1, 2, and
f (t1, t2) is the joint density function of the signals. Since, by the definition of
conditional probability, f (t1, t2)� g(t1 | t2)h(t2), in which g(t1 | t2) and h(t2) are the
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conditional density of t1 given t2, and the unconditional density of t2, respectively,
it follows that (6) holds if and only if

g(t 01 j t 02)
g(t 001 j t 02)

æ
g(t 01 j t 002)
g(t 001 j t 002)

(7)

which is also known as the Monotone Likelihood Ratio Property, that is, higher
values of t1 become relatively more likely as t2 increases. An implication of (7) is
that137

G(t1 | t
0
2)ÅG(t1 | t

00
2 )

in which G(t1 | t2) is the conditional distribution of t1 given t2. In words, the
distribution of t1 conditional on t 02 first-order stochastically dominates the
distribution of t1 conditional on t 002 , if t

0
2> t 002 . The implication of affiliation that is

probably used most frequently in auction-theory proofs is that138

@

@t2

g(t1 j t2)
1ÿ G(t1 j t2)

0@ 1A Æ 0:

In words, the hazard rate of t1 is everywhere decreasing in t2.
In the case of independent signals, affiliation holds weakly.

Appendix D: Examples using the uniform distribution

This Appendix uses the uniform distribution to develop some simple examples of
bidding in the standard auctions, and illustrates the material in the preceding
Appendices.
The uniform distribution (F(�)� (�ÿ � )=( Y�ÿ �), f ��)� 1=(Y�ÿ �)) is often

particularly easy to work with in auction theory. The following fact is very
helpful: the expected kth highest value among n values independently drawn from
the uniform distribution on [ �; Y� ] is

�� n� 1ÿ k

n� 1

0@ 1A (Y�ÿ �):

Bidding with independent private values, revenue equivalence, and marginal revenues

Begin with risk-neutral bidders i� 1, ..., n each of whom has a private value �i
independently drawn from [�; Y� ].
Then in a second-price (or ascending) auction, everyone bids (or bids up to) her

true value, so the seller's expected revenue is the expected second-highest value of
the n values which, using the fact given above, equals �� ((nÿ 1)=(n� 1))( Y�ÿ �).
In a first-price auction, by revenue equivalence, i bids her expected payment

conditional on winning an ascending auction. Conditional on �i being the highest
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value, the other nÿ 1 values are uniformly distributed on [�; �i] so, using the fact
about the uniform distribution, the expected value of the highest of these Ð
which is what i would expect to pay conditional on winning Ð is
�� ((nÿ 1)=n)(�i ÿ �), so this will be i's bid.
Alternatively, we can derive i's equilibrium bidding strategy using the direct

approach, and thus confirm revenue equivalence.139

Note that the proportion of buyers with valuations above any price � is linear in
�, that is, q(�)� 1ÿ F(�)� ( Y�ÿ �)=(Y�ÿ �). Therefore �� Y�ÿ (Y�ÿ �)q, so the
uniform distribution corresponds to linear demand (since � plays the role of
price). It follows that the marginal revenue curve is just linear and twice as steep as
the demand curve, that is, MR(q(�))� Y�ÿ 2 (Y�ÿ �)q, which implies MR(�)�
Y�ÿ 2 (Y�ÿ �)(( Y�ÿ �)=( Y�ÿ �))� 2�ÿ Y�.140
Since E{maxi� 1; ���; n �i}� �� (n=(n� 1))( Y�ÿ �), the expected marginal revenue

of the highest bidder equals �� ((nÿ 1)=(n� 1))( Y�ÿ �), which confirms our
earlier result that this is the expected revenue from any standard auction (without
a reserve price).
Furthermore, since the marginal revenue curve is downward sloping, an

optimal (that is, expected-revenue maximising) auction is any standard auction
together with a reserve price, pr� ( Y�=2) (so that MR(pr)� 0), below which no sale
will be made.

Bidding with common values, and the winner's curse

Now let the bidders have signals ti, and �i��ti� �
P

j 6� i tj. (So �� 0 is the
private values case, and �� � is pure common values; we assume �å �.) Let t( j) be
the actual j th highest signal.
In the symmetric equilibrium of an ascending auction each player quits where

she would just be indifferent about finding herself a winner. So the first quit is at
price (�� (nÿ 1)�)t(n), since that would be the actual value to all if all bidders had
this signal; the remaining bidders all observe this and the next quit is at
�t(n)� (�� (nÿ 2)�)t(nÿ 1) since this would be the current quitter's value if all the
other remaining bidders were to quit with her; the other bidders all observe this
and infer the next lowest signal, etc. The final quit, and so actual sale price is at
pÃ� � P n

j � 3 t( j)� (�� �)t(2).
To check this is the equilibrium, note, for example, that if the player with the

second-highest signal, t(2), waited to quit and found herself a winner at a price
pÃ� (�� �)" she would then infer t(1)� t(2)� " (since the final opponent is bidding
symmetrically to her equilibrium behaviour) hence that the value of the object to
her was just pÃ� �", so she had lost money. But when the price reached
pÃÿ (�� �)", she could infer that her final opponent's signal is at least t(2)ÿ "
hence that the value of the object to her was at least pÃÿ �", so quitting early
would have given up the opportunity of making some money (in the states in
which the final opponent would have quit close to this price).141

Note that when the player with the second-highest signal quits, she knows
(assuming equilibrium behaviour) that the remaining signal is (weakly) higher
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than hers. So she is sure the actual value of the object to her cannot be less than
the price at which she is quitting, and that the expected value is higher. This
illustrates the winner's curse. The point is that what is relevant to her is not the
expected value of the object, but rather its expected value conditional on her
winning it.142 Only when she wins the object does she care about its value, so she
quits exactly at its value conditional on her winning. Exactly the same effect Ð
that winning the auction is bad news about opponents' signals, so bids must be
adjusted down to allow for the `winner's curse' Ð arises in the other auction
types.
Note that the ascending auction equilibrium does not depend on the bidders'

signals being independent or on their distributions (which can be different for
different bidders), or on the bidders being risk-neutral. However, these properties
do not extend to the other standard auctions. So henceforth assume the signals are
independent and uniform on [0, ^t], and the bidders are risk-neutral.
In a second-price sealed-bid auction the logic is similar to that for the ascending

auction. Bidder i with signal ti is willing to pay anything up to her expected value
conditional on her winning the object but being just tied with one other with the
same signal. The difference is that the bidder does not see the other (nÿ 2)
opponents' bids, so estimates their signals at (ti=2) (since conditional on them
being below ti, they are uniformly distributed below ti). So i bids �(nÿ 2)(ti=
2)� (�� �)ti� (�� (n=2)�)ti.143
The simplest way to solve for first-price bidding strategies is to use revenue

equivalence.144 Conditional on winning the second-price auction, a bidder with
signal ti expects to pay (�� (n=2)�)tÃ in which tÃ is the expected highest of nÿ 1
signals uniformly distributed on [0, ti], that is, tÃ� ((nÿ 1)=n)ti. So i bids this
expected payment, that is, ((nÿ 1)=n)(�� (n=2)�)ti.

Bidding with affiliated signals, and revenue rankings

A tractable example of affiliated information that illustrates the revenue-ranking
results derived in Appendix C (and is also useful for developing other examples145)
has risk-neutral bidders i� 1, ..., n each of whom receives a signal ti that is
independently drawn from a uniform distribution on [�ÿ 1

2; �� 1
2 ] where � is the

(pure) common value of a single object for sale. Assume a `diffuse prior' for �,
that is, all values of � are equally likely. (More formally we can let � be uniformly
distributed on [ÿM,�M ] and take the limit as M!1.) So a higher value of ti
makes a higher value of � more likely, and hence higher values of the other signals
more likely, and it can be checked that this example satisfies the formal definition
of affiliation.
Let the j th highest actual signal be t( j), and observe that conditional on all the

signals t1, ..., tn, the expected value of � equals 1
2(t(1) � t(n)) (since any value of

� 2 [t(1) ÿ 1
2; t(n) � 1

2 ] is equally probable).
We now compute the symmetric equilibria of the standard auction types.
In an ascending auction, the first quit will be at price t(n) (since that is where the

lowest-signal bidder would be indifferent about winning were everyone else to quit
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simultaneously with her), and every other bidder i will then infer t(n) and quit at
1
2(t(n) � ti) (since that is where each i would be just indifferent about finding herself
the winner). The price paid by the winner will therefore be 1

2(t(n) � t(2)) which,
using our result about the uniform distribution, on average equals
1
2([�ÿ 1

2� 1=(n� 1)]� [�ÿ 1
2� (nÿ 1)=(n� 1)])� �ÿ 1

2(1=(n� 1)).
In a sealed-bid second-price auction, each bidder i bids her expected value,

conditional on being tied for winner with one other bidder (see previous
subsection). That is, i bids thinking of herself as being the highest of nÿ 1 bidders
uniformly drawn from [�ÿ 1

2; �� 1
2] and tied with one other, so on average, in this

case, ti � [�ÿ 1
2� (nÿ 1)=n] so i's estimate of � in this case, and hence her bid,

equals ti � 1
2ÿ (nÿ 1)=n. On average, the second-highest bidder of n bidders

actually has signal t(2) � [�ÿ 1
2� (nÿ 1)=(n� 1)] so bids [�ÿ 1

2� (nÿ 1)=(n� 1)]
� [12ÿ (nÿ 1)=n]. So the expected revenue from this auction equals �ÿ ((nÿ 1)=n)
(1=(n� 1)).
In a first-price auction, likewise, each bidder i bids tiÿ x for some x; this is

because of our `diffuse prior' assumption which means that i's signal gives her no
information about whether she is high or low relative to others' signals or the
`truth', and so should not affect how close she bids to her signal. Let
ti � �ÿ 1

2� Ti. In equilibrium i will have the highest signal, and so win the
auction, with probability T n ÿ 1

i , and will earn �ÿ (ti ÿ x)� x� 1
2ÿ Ti when she

wins. So if, instead, i had deviated from the symmetric equilibrium by bidding a
small amount " more, as if she had signal ti� ", she would win x� 1

2ÿ Ti(ÿ") with
additional probability (Ti� ")nÿ 1ÿ (Ti)

nÿ 1� (nÿ 1)"T n ÿ 2
i , for small ", but pay

an additional " in the T n ÿ 1
i cases in which she would have won anyway. In

equilibrium imust be just indifferent about the small deviation, so since she knows
only that Ti is uniformly distributed on [0, 1],�1

Ti � 0

(nÿ 1)"T nÿ 2
i x� 1

2
ÿ Ti

0@ 1Aÿ "T nÿ 1
i

24 35 dTi � 0

(we are omitting terms in �2 and higher orders of �)

X "T nÿ 1
i x� 1

2

0@ 1Aÿ (nÿ 1) "
T n
i

n
ÿ " T

n
i

n

24 351

Ti � 0

� 0 X x� 1
2:

So i bids ti ÿ 1
2, and the price is set by the bidder with the highest signal, t(1), which

equals �ÿ 1
2� n=(n� 1) on average. So the expected revenue from the auction is

�ÿ 1=(n� 1))� .
These results confirm the Milgrom and Weber revenue rankings of the standard

auctions.
Finally, since signals are affiliated an optimal auction can extract all the surplus for

the auctioneer (see Section 6 and Appendix C). Here it suffices to ask each bidder to
declare ti, allocate the good to the high bidder (say) at the `fair' price

1
2[t(1) � t(n)], and

ensure truth-telling behavior by imposing large fines on all the bidders if t(1)ÿ t(n)> 1.
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Appendix E: bibliography

Sections 2±14 of this bibliography correspond to those sections of this paper.
Articles marked (�) are reproduced in The Economic Theory of Auctions (see
Section 18).
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3. Introduction to the recent literature

McAfee and McMillan (�1987a); Maskin and Riley (�1985); Riley (1989a).
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Bulow and Klemperer (1999b).

7.3. Information advantages
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(1997).
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(1990); Levin and Smith (1996b); Piccione and Tan (1996).

9. Collusion

Robinson (�1985); McAfee and McMillan (�1992); Hendricks and Porter (�1989);
Graham and Marshall (1987); Graham, Marshall, and Richard (1990); Mailath
and Zemsky (1991); Hendricks, Porter, and Tan (1999).
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10.2. Simultaneous auctions

Wilson (�1979); Back and Zender (�1993); Anton and Yao (�1992); Klemperer and
Meyer (�1989); Hansen (�1988); Maxwell (1983); Bernheim and Whinston (1986);
Anton and Yao (1989); Daripa (1996a); Daripa (1996b); Nyborg (1997);
Engelbrecht-Wiggans and Kahn (1998); Engelbrecht-Wiggans and Kahn (1998);
Wang and Zender (1998).
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and new foreword �1999); Bulow and Klemperer (�1994); McAfee and Vincent
(�1993); Bernhardt and Scoones (1994); Engelbrecht-Wiggans (1994); von der
Fehr (1994); Gale and Hausch (1994); Robert, Laffont, and Loisel (1994); Beggs
and Graddy (1997); McAfee and Vincent (1997).

(ii) Bidders with multi-unit demand: Weber (�1983); Ortega Reichert (�1968);
Hausch (1986); Pitchik and Schotter (1988); Black and de Meza (1992); Krishna
(1993); Robert (� 1995); Gale and Stegeman (1995); Pitchik (1995); Gale, Hausch,
and Stegeman (1998); von der Fehr and Riis (1999).

10.4. Efficient auctions

Ausubel (1998); Ausubel and Cramton (1998); Dasgupta and Maskin (1998); Jehiel
and Moldovanu (1998); Perry and Reny (1998); Bikhchandani (1999).

11. Royalties, incentive contracts, and payments for quality

Riley (�1988); Laffont and Tirole (�1987); Che (�1993); McAfee andMcMillan (1986);
McAfee and McMillan (1987d); Riordan and Sappington (1987); Branco (1997).

12. Double auctions, etc

12.1. Double auctions

Chatterjee and Samuelson (�1983); Wilson (�1985); Rustichini, Satterthwaite, and
Williams (�1994); McAfee (�1992); Leininger, Linhart, and Radner (1989);
Satterthwaite and Williams (1989a); Satterthwaite and Williams (1989b).

12.2. Related two-sided trading mechanisms

Myerson and Satterthwaite (�1983); Cramton, Gibbons, and Klemperer (�1987).
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13. Other topics

13.1. Budget constraints

Che and Gale (�1998); Pitchik and Schotter (1988); Pitchik (1995); Che and Gale
(1996); Benoõt and Krishna (1998).

13.2. Externalities between bidders

Jehiel and Moldovanu (�1996); Jehiel, Moldovanu, and Stacchetti (1996); Caillaud
and Jehiel (1998).

13.3. Jump bidding

Avery (�1998); Fishman (�1988); Daniel and Hirshleifer (1995).

13.4. The war of attrition

Bulow and Klemperer (�1999a); Riley (1980); Bliss and Nalebuff (1984);
Fudenberg and Tirole (1986); Krishna and Morgan (1997).

13.5. Competing auctioneers

McAfee (�1993); Peters and Severinov (1997); Burguet and SaÂ kovics (1999).
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14.1. Empirical

Laffont (�1997); Hendricks and Porter (1988); Hendricks and Paarsch (1995);
Laffont, Ossard, and Vuong (1995); Porter (1995); Laffont and Vuong (1996).

14.2. Experimental

Kagel (�1995).

15. More on specific auction forms
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Lebrun (1996); Maskin and Riley (1996a); Maskin and Riley (1996b); Athey
(1997); Lizzeri and Persico (1998).
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15.2. More on second price auctions

Rothkopf, Teisberg, and Kahn (1990); Bikhchandani and Riley (1991); Bulow,
Huang, and Klemperer (1995); Lopomo (1998); Wilson (1998); Bulow and
Klemperer (1999b).

16. Miscellaneous

Cassady (1967); Shubik (1983); Ashenfelter (1989); McAfee and McMillan (1994);
McAfee and McMillan (1996); Riley and Li (1997); Ginsburgh (1998); Bulow and
Klemperer (1998, Appendix B); Milgrom (forthcoming).

17. Surveys

Klemperer (�1999); McAfee and McMillan (�1987); Milgrom (1985); Weber
(1985); Milgrom (1987); Milgrom (1989); Riley (1989b); Maskin (1992); Wilson
(1992); Bikhchandani and Huang (1993); Harstad and Rothkopf (1994);
Rothkopf (1994); Wolfstetter (1996).
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Notes

1. See McAfee and McMillan (1994, 1996), Klemperer (1998) and Milgrom (forth-

coming).
2. For example, Green and Newbery (1992) discuss the use in the U.K. electricity

market of the auction mechanism first analysed in Klemperer and Meyer (1989).

3. See Laffont (1997).
4. See Kagel (1995).
5. See Section 8.3.
6. See Section 4.

7. Appendix B of Bulow and Klemperer (1998) provides one illustration.
8. Queues and lobbying contests are examples of all-pay auction models; see, for

example, Holt and Sherman (1982) and Riley (1989b). The war of attrition can also
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be modelled as a kind of all-pay auction; see Section 13.4, below, and Bulow and

Klemperer (1999a). Insights from auction theory can explain rationing; see Section
8.1, below, and Gilbert and Klemperer (forthcoming).

9. Klemperer (forthcoming).
10. Confusingly, the second-price sealed-bid auction is sometimes called a Dutch auction

by investment bankers.
11. Cassady's (1967) book provides a detailed, although now somewhat dated, account of

many of the contemporaneous auction institutions.

12. Antiques and artwork are commonly sold using versions of the ascending auction,
and houses are sometimes sold this way, too. Bikhchandani and Riley (1991) discuss
different types of ascending auction. See also Section 13.3.

13. For example, in Dutch flower auctions, the potential buyers all sit in a room at desks
with buzzers connected to an electronic clock at the front of the room. The interior of
the clock has information about what is being sold and the price at which the auction

starts. Once the auction begins, a series of lights around the edge of the clock indicate
to what percentage of the original asking price the good has fallen. As soon as one
bidder buzzes in, she gets the flowers at the price indicated on the clock. (Except that,
if there are several lots of the same flowers from the same seller available that

morning, the buyer can choose to buy only some of the available lots, and the rest will
be re-auctioned.) Fish are sold in a similar way in Israel, as is tobacco in Canada.

14. First-price sealed-bid auctions are used in auctioning mineral rights in government-

owned land; they are also sometimes used in the sales of artwork and real estate. This
method is also often used in procurement (that is, competing contractors submit
prices and the lowest bidder wins and receives her price for fulfilling the contract).

U.K. Treasury securities are sold through the multi-unit equivalent of the first-price
auction (every winner pays her own bid), and U.S. Treasury auctions used to be run
this way too, though recently the U.S. Treasury has also been using a multi-unit

version of the second-price sealed-bid auction.
15. This auction form is used for most auctions of stamps by mail, and is also used for

other goods in some auctions on the internet (see Lucking-Reiley, 1998), but it is
much less commonly used than the other standard forms (see Rothkopf, Teisberg and

Kahn, 1990 for some discussion why); it is commonly studied in part because of its
attractive theoretical properties. A multi-unit version is sometimes used by
governments when selling foreign exchange and by companies when buying back

shares. Economists usually model the multi-unit version by assuming the price paid is
the highest losing bid, since this has theoretical properties analogous to those of the
single-unit second-price case. In practice the price paid is often that of the lowest

winning bidder.
16. The appropriate concept of equilibrium is therefore Bayesian-Nash equilibrium. That

is, each player's strategy is a function of her own information, and maximizes her
expected payoff given other players' strategies and given her beliefs about other

players' information. See, for example, Gibbons (1992).
17. That is, bidder i receives signal ti and would have value �i (t1, ..., tn) if all bidders'

signals were available to her. In the private-value model �i (t1, ..., tn) is a function only
of ti. In the pure common-value model �i (t1, ..., tn)� �j (t1, ..., tn), for all t1, ..., tn. (If i's
actual value Vi (t1, ..., tn, s1, ..., sk) is also a function of other information s1, ..., sk, then
of course �i (t1, ..., tn)�E{Vi (t1, ..., tn, s1, ..., sk) | t1, ..., tn} is just i's estimated value, but

for most purposes it does not matter whether �i (t1, ..., tn) is an estimated or an actual
value.)
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18. That is, the set of strategies available to a player is the same in the descending auction

as in the first-price sealed-bid auction. Choosing any given bid yields the same payoffs
in both games as a function of the other players' bids.

19. To solve for the bidding strategies, the direct method is to examine a player's first-
order condition in which she trades off her probability of winning (which increases

with her bid) with her profit conditional on winning (which decreases with her bid).
Note 121 illustrates the method. For the independent-signal case a faster and more
elegant approach is to use the revenue equivalence theorem, see Appendix A.

Appendix D gives examples.
20. To confirm this, consider bidding �ÿ x when your true value is �. If the highest bid

other than yours is w, then if �ÿ x>w you win the auction and pay w, just as if you

bid �. If w>� you lose the auction and get nothing, just as if you bid �. But if
�>w>�ÿ x, bidding �ÿ x causes you to lose the auction and get nothing, whereas if
you had bid �, you would have won the auction and paid w for a net surplus of �ÿw.

So you never gain, and might lose, if you bid �ÿ x.
Now consider bidding �� x when your true value is �. If the highest bid other than

yours is w, then if �>w you win and pay w, just as if you bid �. If w>�� x you lose
and pay nothing, just as if you bid �. But if �� x>w>�, having bid �� x causes you

to `win' an auction you otherwise would have lost, and you have to pay w>� so you
get negative surplus. So bidding �� x may hurt you compared with bidding �, but it
never helps you.

21. Shubik (1983) provides an attractively written historical sketch going back to the
Babylonian and Roman empires. Most famously, the whole Roman empire was sold
by ascending auction in A.D. 193 by the Praetorian Guards; the winner, and therefore

next Emperor, was Didius Julianus who reigned for just over two months before
being overthrown and executed by Septimius Severus (an early and sad case of the
winner's curse); see also notes 56, 106, and 108, and see Gibbon (1776), Vol I, Chap V

for an account.
22. There are slightly earlier studies in the operations research literature, especially

Friedman (1956), but these treat the problem decision-theoretically with bidders
estimating opponents' bidding strategies based on a naive model of past behavior.

23. He shared the prize with Jim Mirrlees whose 1971 paper, although couched in the
context of the theory of optimal income taxation, developed techniques that were to
prove critical to the later analysis of auctions. Vickrey (1976) makes additional

contributions to auction theory, including sketching the `simultaneous ascending
auction' later proposed by McAfee, Milgrom and Wilson for the recent FCC auctions
of radio spectrum licenses (see note 78).

24. Rothkopf (1969) addresses a similar problem to Wilson's, but implicitly restricts
bidders' strategies to multiples of their estimated values (see Rothkopf (1980)). Capen
et al (1971) is a well-known, more popular account of the winner's curse in practice
that was immensely important in influencing bidding practice. Wilson (1967) is a

precursor to Wilson (1969), but with a less natural equilibrium concept.
25. See also the brief exposition of this work in Section 3.1 of Weber (1983) (see Section

10.3. of this survey, and reprinted in that Part of The Economic Theory of Auctions).

26. Personal communication from Paul Milgrom.
27. A caveat is that the effects of correlated types cannot properly be discussed with just

two types, and this section of the paper is a little flawed and confusing. However

Riley (1989a) has a nice discussion of correlation with just three possible types of each
bidder. See also Appendix C to this introduction.
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28. Other valuable survey material includes Milgrom (1985, 1987, 1989), Weber (1985),

Riley (1989b), Maskin (1992), Wilson (1992), Harstad and Rothkopf (1994),
Rothkopf (1994), and Wolfstetter (1996).

29. Ortega Reichert (1968) and Holt (1980) made some earlier extensions of Vickrey's
work. Harris and Raviv (1981) covers much of the same ground as Myerson and

Riley and Samuelson.
30. This is not the most general statement. See Appendix A. To see the necessity of a

strictly increasing or atomless distribution, see note 117. See Riley (1989a) for revenue

equivalence results for discrete distributions.
31. Other examples that can be modelled as all-pay auctions include queues (see Holt and

Sherman (1982)), legal battles (see Baye, Kovenock and De Vries (1997)), and

markets with consumer switching costs in which firms compete for the prize of selling
to new unattached consumers by lowering their prices to their old locked-in
customers (see especially Appendix B of Bulow and Klemperer (1998) which explicitly

uses the revenue equivalence theorem, and also Rosenthal (1980) and more generally,
Klemperer (1995)). The war of attrition is also a kind of all-pay auction (see Section
13.4, below, and Bulow and Klemperer (1999a)).

32. The Appendix also gives an example of solving for bidding strategies in more complex

auctions by using revenue equivalence with an ascending auction.
33. Also discussed in Section 8.2. and reprinted in that Part of The Economic Theory of

Auctions.

34. Bulow and Klemperer show how the result extends with common values, non-
independent private information, and risk-aversion, while Bulow and Roberts restrict
attention to the risk-neutral, independent, private-value, framework. See Appendix B.

The main thrust of Bulow and Klemperer's analysis is to develop a result about the
value to an auctioneer of an additional bidder relative to the importance of
constructing an optimal auction. (See Section 8.2. below.)

35. See Myerson (1981) and Bulow and Roberts (1989) for details.
36. This amounts to the assumption that the monopolist's demand curve (or bidder's

distribution function) is not too convex.
The assumption that bidders with higher signals have higher marginal revenues is

more stringent in common-value contexts. See note 54.
37. In a sealed-bid second-price auction with common-value components, a bidder bids her

expected utility conditional on being tied for highest bidder (see Appendices C and D).

38. See Waehrer, Harstad and Rothkopf (1998) for the fullest exposition of the case of a
risk-averse auctioneer.

39. Matthews (1983) has many similar results. Holt (1980) is an earlier treatment.

40. Matthews' paper is also important for its analysis of the case where the number of
buyers is unknown. See Section 8.4. below.

41. See Robert, Laffont and Loisel (1994).
42. Cremer and McLean (1988), McAfee, McMillan and Reny (1989) and McAfee and

Reny (1992) show the result in even greater generality. EsoÈ (1999) argues the result
may not be too sensitive to bidder risk-aversion.

43. See Appendix C for a precise definition.

44. Appendix D gives an example.
45. See also the discussion of Milgrom and Weber (1982c) in Section 10.3.
46. More precisely, consider setting an optimal reserve price after seeing all but the

highest valuation. Affiliation implies the highest value is likely to be close to the
second-highest, so the demand curve formed by a continuum of bidders with
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valuations drawn from the highest bidder's value distribution conditional on all

others' values is rather flat just above the second value. Thus the final part of the
highest-bidder's marginal revenue curve, conditional on all that has been observed, is
also rather flat around the second-highest valuation. So even if the reserve price could
be set based on all this information, it would usually be set very low. Hence it will also

be set very low if it must be set prior to the auction.
Note that even with independent signals the reserve price should optimally be set

after the auction if there are common-value components to valuations. See, for

example, Bulow and Klemperer (1996) for how to set the optimal reserve price in this
case.

47. For results about the existence and uniqueness of equilibria in first-price auctions see

Lebrun (1996), Maskin and Riley (1996a,b), Athey (1997) and Lizzeri and Persico
(1998) (who consider a broader class of games). Some similar results can be developed
following Bulow, Huang and Klemperer (1995). Wilson (1998) derives explicitly the

equilibrium of an ascending auction for a model with both private- and common-
value components which allows asymmetries.

48. See also Rothkopf, Harstad and Fu (1997).
49. In a first-price auction the first-order condition of a bidder with value � considering

raising her bid, b, by a small amount �b that would raise her probability of winning, p,
by a small amount �p sets (�ÿ b)�pÿ p�b� 0. Weaker bidders have smaller
probabilities of winning, p, and hence smaller `profit margins', �ÿ b, when they do win.

50. Maskin (1992) shows an ascending auction is efficient for a single good, even when
valuations have common-value components, under a broad class of assumptions.

51. The earliest analyses of asymmetric cases are in Vickrey (1961) and Griesmer, Levitan

and Shubik (1967). Marshall, Meurer, Richard and Stromquist (1994) and Riley and
Li (1997) solve additional cases by numerical methods.

52. The analysis has been influential in competition policy. The UK Government recently

blocked BSkyB (Rupert Murdoch's satellite television company) from acquiring
Manchester United (England's most successful football club). An important reason
was concern that by acquiring Manchester United, which receives the biggest share of
the Premier League's television revenues (about 7 percent), BSkyB would be able to

shut out other television companies when the contract for the league's broadcasting
rights next comes up for auction (see Economist, March 20, 1999, p. 35, Financial
Times, April 10, 1999, p. 22, and U.K. Monopolies and Mergers Commission (1999)).

53. Also discussed in Sections 7.3. and 8.3. and reprinted in Part 8.3. of The Economic
Theory of Auctions.

54. However, Bulow and Klemperer (1999b) show that the assumption that bidders with

higher signals have higher marginal revenues is not innocuous in the common-values
context. In the private-values context the assumption is equivalent to the assumption
of downward-sloping marginal revenue for a monopolist whose demand corresponds
to the distribution of a bidder's signals; in common-value settings, bidders' values and

hence marginal revenues depend on others' signals, and oligopolists' marginal
revenues are not necessarily decreasing in other firms' outputs. In the pure-common-
values (and almost-common-values) cases the assumption is related to the assumption

of strategic substitutes, see Bulow and Klemperer (1999b) and also Bulow,
Geanakoplos and Klemperer (1985a,b).
Bulow and Klemperer (1999b) show that if in fact this assumption does not hold,

then a number of standard presumptions are violated in the symmetric equilibrium of a
pure-common-values ascending auction; for example, more bidders can lower expected
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profits (see note 63) selling more units can raise average price, and rationing (as in

Initial Public Offerings) can raise expected price. Furthermore, even if the assumption
on marginal revenue holds, these results arise in the almost-common values case.

55. Also discussed in Sections 7.2. and 8.3. and reprinted in Part 8.3. of The Economic
Theory of Auctions.

56. The Praetorians, when auctioning the Empire (see note 21), seem to have stipulated
that the winning bidder could not punish the losers. This provision may have
encouraged entry to the auction, although it would presumably reduce revenue from

any exogenously fixed number of bidders.
57. See Menezes and Monteiro (1997) for the case in which bidders know their private

values prior to the entry decision.

58. But the seller can increase social surplus, and hence her own expected revenue, if she
can run a series of auctions. For example, she might announce an auction with a
reserve price and the proviso that if the reserve is not met there will be a subsequent

auction. Then there will be additional entrants in the second round if the good is not
sold in the first round, that is, in the states in which the first-round entrants turned
out to have low valuations. This increases social efficiency and seller revenue. See
Burguet and SaÂ kovics (1996) and also McAfee and McMillan (1988).

59. Earlier related literature includes Engelbrecht-Wiggans (1987) and McAfee and
McMillan (1987c). Levin and Smith (1996b) considers the seller's preference between
standard auction forms when buyers are risk-averse; the auctioneer typically, but not

always, prefers first-price to second-price auctions when bidders have entry costs.
60. See Section 8.4. below.
61. The same result extends to affiliated private value auctions.

62. Furthermore, Bulow and Klemperer (1996) show in the same setting that an
additional bidder is worth more than the ability to set an optimal reserve price against
a given number of bidders. See Section 8.2. below.

63. The point is that while the assumption that bidders with higher signals have higher
marginal revenues usually holds in private-value settings, it often does not hold in
pure-common-value settings. See note 54.
For a simple example consider the case where the common value equals the

maximum of three signals �i, i� 1, 2, 3, each drawn independently from a uniform
distribution on [0,1] and each known by a different bidder. By selling to an
uninformed bidder the seller makes 9

12(�Emax{�1; �2; �3}). Selling to a single

informed bidder the maximum revenue equals 8
12(�Emax{�2; �3}) achieved by setting

a reservation price at this level (an informed bidder with signal 0 will just be willing to
pay this price). Selling to two informed bidders yields at most 7

12 in expectation (by a

slightly harder calculation). Selling to all three bidders yields at most 6
12 in expectation

(the expected second-highest signal).
64. Or because it lowers the cost of persuading a given number of buyers to invest in

participating in the market. Possible examples include the rationing of microchips,

and split-award defense contracts. Bulow and Klemperer (1999b) provide another
reason for rationing. See the previous paragraph.

65. Similarly, Persico (1997) shows that bidders have more incentive to collect

information prior to a first-price auction than prior to a second-price auction.
66. Similarly, Daniel and Hirshleifer (1995) obtain jump bidding in an ascending auction

when each successive bid is costly. See Section 13.3.

67. In common-value settings higher signals would not imply higher marginal revenues.
See note 54.
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68. A Cremer and McLean (1985)-style mechanism is probably not a realistic one in a

practical setting. See our discussion in Section 6, above, and also Bulow and
Klemperer (1996) and Lopomo (1998).

69. Milgrom (1979) gives a precise characterisation of the signal structures that imply
Wilson's result.

70. Pesendorfer and Swinkels (1997) shows that the sale price converges to the true value
in a (k� 1)st price auction for k objects under weaker assumptions than Wilson's,
provided that the number of objects as well as the number of bidders becomes large.

71. Also discussed in Section 5, and reprinted in that Part of The Economic Theory of
Auctions.

72. In Piccione and Tan (1996) the number of bidders is known, but the number of

bidders with private information is uncertain. This paper also considers common-
value settings.

73. McAfee and McMillan also consider optimal auctions for the case of risk-neutral

bidders.
74. See Harstad, Levin, and Kagel (1990) for explicit bidding functions for the standard

auction forms when the assumptions for revenue equivalence apply. The revenue
equivalence result is also a special case of results in Matthews (1987) and McAfee and

McMillan (1987b).
75. Milgrom (1987) develops a similar intuition to argue that repeated second-price

auctions are more susceptible to collusion than repeated first-price auctions.

76. Discussed in Section 12.2. and reprinted in that Part of The Economic Theory of
Auctions.

77. Graham and Marshall (1987) address similar issues and show how any subset of

bidders can achieve efficient collusion if an outside agent is available to achieve ex-
post budget balancing. (See also Graham, Marshall, and Richard (1990).) Mailath
and Zemsky (1991) show how to achieve efficient collusion in second-price auctions,

even among a subset of bidders who are not ex-ante identical and without the need
for an outside agent, but using a more complicated mechanism. Hendricks, Porter,
and Tan (1999) derive a necessary and sufficient condition for an efficient, incentive-
compatible cartel in a common-value setting.

78. Much current work has been stimulated by the recent government auctions of radio
spectrum licenses (for mobile telephony, etc.), and emphasises the problem of selling
heterogenous goods with complementarities between them, with common-value

components to bidders' valuations, and perhaps also externalities between bidders.
For discussion of the spectrum sales see McAfee and McMillan (1994, 1996),
Klemperer (1998) (discussed in Section 7.2. and reprinted in that Part of The

Economics of Auctions) and especially, Milgrom (forthcoming). Another large body of
important work has been stimulated by treasury auctions. See Bikhchandani and
Huang (1993) for a survey of treasury security markets.

79. As for Myerson (1981), the analysis can be interpreted through marginal revenues,

though it is not presented this way.
80. See, for example, Armstrong (1998) and Avery and Hendershott (1997), and

Rothkopf, Pekec, and Harstad (1998).

81. The section of Wilson's paper on discriminatory auctions is a little misleading about
the relationship with uniform-price auctions.
Maxwell (1983) is earlier work extending Wilson's paper.

82. Anton and Yao also use a private-value framework in contrast to Back and Zender's
and Wilson's common-value setting. See also Bernheim and Whinston (1986) and
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Anton and Yao (1989) for related models without incomplete information about

costs or values.
83. Back and Zender (1993) argue that realistic amounts of uncertainty may nevertheless

leave a continuum of equilibria. See Nyborg (1997) for further discussion and other
arguments against the low-price equilibrium. Other related recent work on

simultaneous multi-unit auctions includes Daripa (1996a,b), Engelbrecht-Wiggans
and Kahn (1997, 1998) and Wang and Zender (1998).

84. See, for example, the developments of Klemperer and Meyer's model in Bolle (1992),

Green and Newbery (1992), and Green (1996).
85. Note, however, that Perry and Reny (1998) show that the Linkage Principle need not

hold if individuals can win more than one unit. The reason is that if (as in Milgrom

and Weber's model) bidders desire at most one unit the underbidder is always a loser
with pessimistic information, but in a multi-unit auction the underbidder for the
marginal unit may already have won inframarginal units and have optimistic

information.
86. In fact Milgrom and Weber (1982c) suggest a resolution of the `anomaly' themselves

in their discussion of the 1981 sale of leases on RCA satellite-based telecommunica-
tions transponders. For other possible resolutions and analyses based on models in

which no buyer demands more than one unit, see Bernhardt and Scoones (1994),
Engelbrecht-Wiggans (1994), von der Fehr (1994), Gale and Hausch (1994), Beggs
and Graddy (1997), and Ginsburg (1998). For analyses when bidders have multi-unit

demand see several of the papers cited in note 88.
87. Discussed in Weber's paper and in our Section 2, and reprinted in that Part of The

Economic Theory of Auctions.

88. Other nice papers analysing sequential auctions when bidders have multi-unit
demand include Robert's (�1995) very elegant, tractable example; Pitchik and
Schotter's (1988), Pitchik's (1995), and Benoit and Krishna's (1998) analyses of

budget-constrained bidders; Levin's (1996), Gale, Hausch and Stegeman's (1998), and
von der Fehr and Riis's (1999) models of procurement auctions where bidders have
increasing or decreasing marginal costs of supply, or capacity constraints, and the
related analyses of Black and de Meza (1992), and Gale and Stegeman (1995);

Krishna's (1993) application to whether incumbents will outbid potential entrants for
capacity; and Hausch's (1986) analysis of sequential versus simultaneous sales in a
model with some similarities to Ortega Reichert's.

89. McAfee and Vincent (1997) consider an auctioneer who cannot commit not to re-
auction an object that fails to meet its reserve, so who might hold multiple auctions of
a single unit.

90. This is true even in the complete information case. See Bikhchandani (1999).
91. Although even in this context the Vickrey auction would be problematic for practical

policy because high-valuers are often required to pay less than low-valuers (which
seems odd to policy makers), because of the odd opportunities for collusive

behaviour, because of budget constraints, etc.
92. Of course, the same effect is present in other models, for example, Klemperer and

Meyer (1989).

93. In analysing this application, he builds on work by Reece (1979).
94. But note royalties can be very dangerous in some settings. Imagine a government

awarding a monopoly license for a market with downward-sloping demand to the

firm that will pay the highest royalty per unit sold. Then firms with identical,
constant, marginal costs will bid the royalty up to the vertical intercept of demand
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less this marginal cost. Government revenue, firm profits, and consumer surplus will

all be zero. Riley assumes constant per unit revenue from the oil, and decreasing
marginal cost up to some output level about which the bidders have private
information.

95. The same result is obtained independently in similar models due to McAfee and

McMillan (1987d) and Riordan and Sappington (1987). A precursor to this work is
McAfee and McMillan (1986).

96. In terms of the formal model, `quality' plays the role of the bidder's expected cost in

Laffont and Tirole. Hence this result.
97. See also Branco (1997) on multi-dimensional auctions.
98. Furthermore, all the papers discussed in this Section are independent private-value

models. The assumption of private values, especially, seems important.
99. Satterthwaite and Williams (1989a) and Williams (1991) had earlier obtained similar

results for the special case k� 1 (the `buyer's bid double auction') which is much

easier to handle because sellers all have a dominant strategy of no misrepresentation.
100. These two papers are both discussed in Section 4 and reprinted in the corresponding

Part of The Economic Theory of Auctions.
101. But this result depends critically on the distributional assumptions, and also assumes

agents play the linear equilibrium constructed by Chatterjee and Samuelson. There
are also non-linear equilibria (see Leininger, Linhart and Radner (1989), and
Satterthwaite and Williams (1989b)).

102. This paper, too, can be understood along the same lines that Bulow and Roberts
explain Myerson and Satterthwaite.

103. We assume the bi are independently drawn from a strictly increasing atomless

distribution, so that the xi correspond to independent draws from a strictly increasing
atomless distribution.

104. See Che and Gale (1996).

105. See Pitchik (1995), Benoit and Krishna (1998) and Harford (1998).
Budget constraints also affect the risk that a successful bidder may go bankrupt, or

otherwise fail to honour the sale contract. See Board (1999), Hansen and Lott (1991),
Spulber (1990), Waehrer (1995), and Zheng (1999).

106. Or an empire. See note 21.
107. In a related vein, Fullerton and McAfee (1999) examine bidders who are concerned

about the risk of entering an industry against stronger rivals.

108. The auction of the Empire (see note 21) was settled by a final jump bid from 5,000
drachms to 6,250 drachms, though in this case bidders' strategies were probably not
optimal ex-ante (and certainly not ex-post).

109. To my knowledge Daniel and Hirshleifer were the first to note that this kind of jump
bidding is an equilibrium of the basic model even absent affiliation or bidding costs.

110. Discussed in Section 6 and reprinted in that Part of The Economic Theory of Auctions.
111. Krishna and Morgan (1997) analyse an open-loop War of Attrition (that is, bidders

cannot revise their strategies based on others' drop-out times) and also analyse the
closely related All-Pay Auction.

112. Many other models of tournaments, lobbying, political contests, R&D races, etc., can

most easily be understood as auctions.
113. See Peters and Severinov (1997) and Burguet and SaÂ kovics (1999) for further

developments along McAfee's lines. In related veins, Manelli and Vincent (1995)

study when a procurement auction is more desirable than sequential negotiation, if
potential suppliers are privately informed about their goods' qualities; and Bulow and
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Klemperer (1996) show a standard auction with a reserve price at the auctioneer's

value is more profitable than any negotiating mechanism (or optimal auction) if the
standard auction attracts at least one more participant (see Section 8.2).

114. A good alternative is Hendricks and Paarsch (1995), while Porter (1995) and Laffont
and Vuong (1996) offer valuable surveys covering a more limited range. Among the

outstanding research articles are Hendricks and Porter (1988), and Laffont, Ossard
and Vuong (1995).

115. An alternative way of obtaining this equation is to write Si (�)�T(�, ~� (�)) equals �'s
surplus when she behaves optimally as type ~� (�). (In fact, ~� (�)� �.) Then the
envelope theorem implies (dSi=d�)� (dT=d�)� (@T=@�). (That is, (dT=d�)� (@T=
@�)� (@T=@~�) (d~�=d�) but (@T=@~�)� 0 when ~� is chosen optimally.)

But (@T=@�)�Pi (�), since if the bidder's behaviour is unchanged, the incremental
utility from a value d� higher is Pi (�)d�.

116. Some readers may wish to think of this analysis in terms of the Revelation Principle

(see Myerson (1979), Dasgupta, Hammond, and Maskin (1979), and Harris and
Townsend (1981)) that says that we can always restrict attention to direct revelation
mechanisms that satisfy incentive compatibility. That is, any mechanism is equivalent
to another mechanism in which agents report their types, �, and wish to do so

truthfully. Here we have analysed any auction by focusing attention on the equivalent
truthful direct revelation mechanism. In our problem the incentive compatibility
(truth-telling) constraints, (1), completely pin down the expected payments that must

be made to each type of agent once Pi (�) and Si (�) have been specified.
117. Note that this argument assumes that the distribution of types of bidder, �, has

positive density everywhere on [ �, Y�] so that dSi (�)=d� is defined everywhere on the

range, and hence Si(�) is completely determined by Si (�) and Pi (�).
For example, assume instead that there are just two types, �� 0 and �� 1, and

each of two bidders is equally likely to be of either type (independent of the other's

type) and the seller begins by simultaneously offering both bidders a price �; if just
one accepts then the trade is made at price �, if both accept then the unit is allocated
by lottery at price �, if neither accepts then the unit is allocated by lottery at price 0.
Then a `high' type prefers to accept so Si (0)� 0, Pi (0)� 1

4, and Pi (1)� 3
4, for any

� 2 (0; 23 ), but the seller's expected revenue is strictly increasing in �, so Revenue
Equivalence fails. See also Harris and Raviv (1981), or closely study Maskin and
Riley (1985).

118. See, for example, Lemma 3 of Bulow and Klemperer (1996) (reprinted in Part 8 of
The Economic Theory of Auctions).

119. The denominator integrates to (F(�))nÿ 1, and the numerator� �
x� �

x[(nÿ 1) f �x)(F(x))nÿ 2]dx�
� �
x� �

xd(F(x)nÿ 1)

� [x:(F(x))nÿ 1]�� ÿ
��
x� �

1:(F(x))nÿ 1dx;

which yields the result.
120. Appendix D illustrates for the case in which F(�) is uniform.
121. To solve directly for the first-price equilibrium bidding strategies, we look for a

symmetric Nash equilibrium in which a bidder with value � chooses the bid b(�), and
assume (as can be proved, see, for example, Example 6.5 of Fudenberg and Tirole
(1991)) that b is a continuous strictly-increasing function of �. Imagine player i with
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value � deviates and chooses the bid bÄ. Let ~� be the type of bidder she would just tie

with, that is, let b(~�)� bÄ. Mimicking ~� would beat all the other (nÿ 1) bidders with
probability (F(~�))nÿ 1 and so yield expected surplus to player i of

T(�, ~�)� (�ÿ b(~�))(F(~�))nÿ 1.

Choosing the best bid to make is equivalent to choosing the best ~� to mimic, which we
can do by looking at the first-order condition

@T(�; ~�)

@~�
�ÿb 0(~�)(F(~�))nÿ 1 � (�ÿ b(~�))(nÿ 1)(F(~�))nÿ 2f �~�):

For the bidding function b(�) to be an equilibrium, i's best-response to all others

bidding according to this function must be to do likewise, that is, her optimal choice
of bÄ is b(�) and of ~� is �.

So

@T

@~�
(�; ~�)� 0 at ~�� �

X b 0(�)� (�ÿ b(�))(nÿ 1)
f ��)
F(�)

:

This differential equation can be solved for the equilibrium, using the boundary
condition

b(�)� �
(it is obvious type � will not bid more than �, and we assume the auctioneer will not
accept lower bids than �).

122. Described in Section 10.3. and reprinted in that Part of The Economic Theory of

Auctions.
123. For an example of using the revenue equivalence theorem to solve an oligopoly

pricing problem, see Appendix B of Bulow and Klemperer (1998).
124. Also discussed in Section 8.2., and reprinted in that Part of The Economic Theory of

Auctions.
125. That is, `revenue'� `price' times `quantity'� �.q(�), so

MR(�)� d

dq
[�:q(�)]� �� q

dq=d�
� �ÿ 1ÿ F(�)

f ��)

126. We can confirm
� q( Ã�)
q � 0 MR(�(q))dq� � Y��� Ã� MR(�) f (�)d� (changing variables

q! [1ÿF(�)], dq! [ÿf(�)d�], reversing limits to cancel the minus sign and defining
q( Y�)� 0 as in Appendix A) which equals

�
Y�
�� Ã� (�f(�)ÿ 1�F(�))d��

[�F(�)ÿ �] Y��� Ã�� Ã�ÿ Ã�F( Ã�) as claimed.
127. It is not hard to check that bidders can be asymmetric, that is, their signals can be

drawn from different distributions.
128. This approach is the one taken by Bulow and Roberts (1989), who themselves follow

Myerson (1981).
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129. That is,

� Y�
�� �

f ��)
��
x� �

Pi(x)dxd�� F(�)

��
x� �

Pi(x)dx

24 35 Y�
�� �

ÿ
� Y�
�� �

F(�)Pi(�)d��
� Y�
�� �

(1ÿ F(�))Pi(�)d�

130. Appendix D illustrates for the case of uniform F(�).
See Myerson (1981) and Bulow and Roberts (1989) for the design of revenue-

maximising auctions when bidders are asymmetric or when higher values do not
always imply higher marginal revenues.

131. The first part of this Appendix is based on notes written by Jeremy Bulow.

Appendix D provides examples that illustrate the results.
132. To fill out this argument a little more, assume that in equilibrium there is some value

for which the expected surplus (and therefore expected purchase price) is the same for

a buyer in either type of auction. This will be true for the lowest-possible buyer value,
for example, since that type of buyer obviously never wins the auction. Then by the
argument in the text, the derivative of surplus with respect to value will be greater in
the first-price auction than in the second-price auction. So the surplus in the first-

price auction begins to grow faster, at least for a while, in the second-price auction.
And if the surpluses ever came together again, the first-price surplus would have to
forge ahead again. So on average across all possible bidder values, buyers will get

more surplus in first-price auctions and sellers must therefore make more money in
second-price auctions.

133. To see why, check that if the other player is bidding this way then this player would

lose money if she were to find herself a winner at a higher price (assuming higher
signals imply higher values) but quitting at a lower price forgoes an opportunity to
make money if the other player quits first. See Appendix D for an example.

134. The argument that the games are strategically equivalent is similar to the one for first-
price and descending auctions.

135. See Appendix D for more discussion and examples.
136. This simple mechanism suffers from additional equilibria that are not truth-tellingÐ

for example, for large V it is also an equilibrium for both bidders to always report
`low'Ðbut more complex mechanisms can be designed in which honesty is the unique
equilibrium, see Myerson (1981).

137. To obtain this, integrate first over t 01> t1, then multiply through by g(t
00
1 | t

0
2)g(t

00
1 | t

00
2 ),

then integrate over t 001 < t 01 to yield an expression which implies this one.
138. To obtain this integrate (7) over t 01> t 001 , and substitute t1 for t

00
1 .

139. The differential equation for i's first-price bidding strategy, b(�i), obtained using the
direct approach, is b 0(�i)� (�iÿ b(�i))(nÿ 1)( f (�i)=F(�i)) (see note 121).
For the uniform distribution, this yields b 0(�i)� (�i ÿ b(�i))(nÿ 1)(1=(�i ÿ �))

which is solved by b(�i)� �� ((nÿ 1)=n)(�i ÿ �).
Since the highest-value bidder will determine the price, the seller's expected

revenue will be E{�� ((nÿ 1)=n)(maxi� 1; ...; n �i ÿ �)}, so using our result that
E{maxi� 1; ...; n �i}� �� (n=(n� 1))(Y�ÿ �) yields that the expected revenue is
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�� ((nÿ 1)=(n� 1))(Y�ÿ �), confirming revenue equivalence with the second-price

auction forms.
140. Obviously, we can also obtain this equation by using the definition, MR(�)�

�ÿ ((1ÿF(�))=f(�)), from Appendix B.
141. The principle for solving the case where bidders' value functions are asymmetric is

similar, and clarifies the argument. Assume just two bidders, for simplicity, with
signals ti, tj and values �i (ti, tj) and �j (ti, tj). Assume that in equilibrium ti quits at the
same time as an opponent of type tj�wi (ti), in which wi (�) is a strictly increasing

function. So

bi (ti)� bj (wi (ti)), (�)
and ti will beat all opponents with types tj<wi (ti), and lose to all higher types.
Now if ti deviated from her equilibrium strategy and waited a tiny bit longer to

quit, she would win against all tj Åwi (ti) at the same prices as before, and she would
also win against a few additional types of j with signals of (slightly above) wi (ti), at a
price of (slightly above) bi (ti). Her value of winning in these additional cases would be

(slightly above) �i (ti,wi (ti)), so if bi (ti) were (strictly) less than �i (ti,wi (ti)), then
deviating to win against a few additional types would be profitable. So
bi (ti)å �i (ti,wi (ti)).
Similarly, if ti were to quit a tiny bit earlier than her equilibrium quitting price, it

would make no difference except that she would lose against a few types with signals
(slightly below) wi (ti) at prices of (slightly below) bi (ti), and type ti would wish to do
this unless bi (ti)Å �i (ti,wi (ti)).

So

bi (ti)� �i (ti,wi (ti)). (��)
That is, ti bids up to the value at which she would make no money if she were to find
herself the winner.

Similarly

bj (tj)� �j (wj (tj), tj).

Substituting the value tj�wi (ti) into this equation yields

bj (wi (ti))� �j (wj (wi (ti)),wi (ti)).

But bj (wi (ti))� bi (ti) by (�). And by definition wj (wi (ti))� ti. (That is, if ti quits at the
same time as wi (ti), then the type that quits at the same time as wi (ti) Ð this type is

wj (wi (ti)) Ð is ti.) So

bi (ti)� �j (ti,wi (ti)).

Comparing with (��) we have
�i (ti,wi (ti))� �j (ti,wi (ti)).

That is, players have the same values when they have types that quit at the same time.
So to find the bidding strategies we solve this last equation for the function wi(ti),

and then substitute this function back into (��) to yield i's bidding function. (Note
that this procedure does not necessarily yield an equilibrium, although it does so in
natural two-bidder or symmetric examples. See Maskin (1992).)
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142. This statement assumes risk-neutrality, but the point we are making obviously does

not.
143. We can also confirm this is the equilibrium either by revenue equivalence with the

ascending auction, or by a similar argument to that for the ascending auction Ð the
only effect on i of i bidding a small amount (���)" more is if i moves from coming

second to winning, etc.
144. An alternative is the direct method, see note 121.
145. Most examples of affiliated information are very hard to work with.
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