
Game Theory Fall 2003

Problem Set 6

[1] Let us study first-price auctions with independent private valuations (following F-T).
The arguments used in this problem set are applicable to many other instances involving
incomplete information (for some other examples, see F-T).

There are two bidders, and a single good is to be auctioned using sealed bid (first price). Each
player has a private valuation for the good, θi, which we assume comes from the compact
interval Θ ≡ [θ, θ̄]. Each θi is drawn iid from the same density g over Θ (call the cdf G).
The auctioneer has a reservation price r ≥ θ, below which the good will not be sold. Player i
learns her valuation, then bids bi. The higher bid wins. Ties are broken equi-probably. Both
players are risk-neutral and their utility function is simply given by θ − b if they win, or 0 if
they lose.

(a) Precisely describe the Bayesian game that is involved here. In writing the payoff function,
it will be useful to view each player i’s bidding strategy as a distribution function Gi over
her bid, as far as the other player is concerned.

Note: Gi does not have a density at this stage (i.e., we cannot assume that)! Indeed, there
may be mass points at particular bids. To proceed further, we will use the notation gi(b)
to refer to probability mass induced by Gi at any bid level b. And we will use the notation
Gi(b) to denote the probability that i’s bid is strictly less than b. [Later, when we prove that
there are no mass points, you can go back to the usual interpretation.]

So the payoff to a type θi from making a bid bi is just

Fi(θi, bi) = (θi − bi)Gj(bi) +
θi − bi

2
gj(bi)

(as you should have verified in part (a) already).

(b) Use a revealed preference argument to show that bi is a nondecreasing function of θi.
That is, pick two values θ < θ′ and let b and b′ be corresponding bids. By optimality,

Fi(θ, b) ≥ Fi(θ, b′)

and
Fi(θ′, b′) ≥ Fi(θ′, b)

Write these out fully, add both sides, cancel common terms, and examine carefully to obtain
the result.

(c) Next, we show that except possibly at r (the reservation value), there are no mass points
in the bid function. Put another way, we must show that the bid function bi(θi) is strictly
increasing for all θi > r. [Note: the argument in part (b) does not establish this.] To do this,
we must use the full power of an equilibrium argument (not just the optimality argument in
part (b)); proceed as follows.
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Suppose that gi(bi) > 0 for some bi > r. Then first prove that there exists ε > 0 such that
person j will never bid in the interval [bi − ε, bi). Then complete the proof by showing that
in this case, a bid of bi is not optimal for player i.

(d) Next, show that there cannot be any “gaps” in the range of i’s bids, or equivalently, that
the bid function must be continuous. This uses the same style of argument as in part (c): if
there is a gap in i’s bid, first, prove something about j’s bid, and then return to i to complete
a proof by contradiction.

(e) Prove that the maximum bids are the same: bi(θ̄) = bj(θ̄).

(f) To proceed further, first let’s invert the bid functions over the range (r, b̄], where b̄ is the
common maximum bid (the previous steps allow us to do this — why?). Call the inverted
functions φi and φj . Make sure you’ve understood what the inverses mean: when player i
bids b, this means she has a valuation of φi(b).

(g) Noting that the φ’s are differentiable almost everywhere because they are monotonic,
show that the following differential equation is satisfied for each i:

(1) G(φj(b)) = [φi(b) − b]g(φj(b))φ′
j(b).

Idea: let i choose the bid b to maximize expected profits. Write down the first order condition
and notice that the appropriate valuation θi for i must be φi(b).

Equivalently, note that (1) can be written as

(2) Gj(b) = [φi(b) − b]gj(b),

where you will recall that Gj and gj are the induced distribution and density (defined almost
everywhere) over person j’s bid.

(h) The rest of the analysis is technical but not difficult. See FT pp. 224–225 for the details.

[2] Here is another example of a Bayesian game, which studies the implications of unanimity
rules in juries. The idea of unanimity is, of course, to guard as much as possible against the
possibility of convicting an innocent individual. In the model that we construct below, some
doubt is thrown on this assertion. In this exercise, you will have not only another application
of Bayesian types but will also use the concept of “pivotality”, something that is used often
in political economy models and elsewhere.

(I follow Osborne’s exposition in his new book, Game Theory).

There are n individuals in a jury, and a defendant, who is either guilty G or Blameless B (no
one knows this, but everybody’s common prior is that he is G with probability π). If he is
guilty, each juror receives an iid signal, which indicates guilt with probability p (a g-signal)
or innocence with probability 1 − p (a b-signal). Assume p > 1/2. If he is blameless, then
the same signals are received, this time with probability 1 − q (for g) and q (for b), where
q > 1/2. Each juror can vote C[onvict] or [A]cquit.

The defendant is convicted if and only if everyone votes to convict.

Assume that every juror has the same payoffs, which are:

0 if a truly guilty person is convicted or a truly blameless person is acquitted.
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−z if an innocent person is convicted.

−(1 − z) if a guilty person is acquitted.

(a) Set this up as a Bayesian game.

(b) Show that z can be viewed as a measure of “resistance to conviction” in the following
sense: if any juror assesses the defendant to be guilty with probability r, then acquital is
weakly better than conviction iff r ≤ z.

(c) Suppose that n = 1. Prove that she makes different decisions depending on her received
signal (i.e., C if she sees g, A if she sees b) if and only if (neglecting weak vs strict inequalities)

(1 − p)π
(1 − p)π + q(1 − π)

≤ z ≤ pπ

pπ + (1 − q)(1 − π)
.

(d) Now let us see under what conditions a juror would use her own signal when there are n
jurors. Let us assume for this step that all other jurors except for me are using their signal in
the way mentioned in part (c). Now notice that my own vote is only salient or pivotal when
all other jurors are voting C (otherwise the outcomne is acquittal anyway). This makes me
think about the circumstances in which all other jurors are in fact voting C — they must all
have a guilty signal! Now suppose I do receive a b-signal. Show that I will use it — i.e., vote
to acquit in this case — only if

z ≥ 1

1 + q
1−p

1−π
π

(
1−q

p

)n−1

and show that the RHS of this inequality converges to 1 as n → ∞. Interpret this result.
How is pivotality (plus our assumption that other jurors are using their signals) driving this
result?

Just for fun, and to see how quickly signals may start getting ignored under these pre-
sumptions, geta calculator and calculate the value of the RHS when n = 12, π = 0.5, and
p = q = 0.8 (pretty reasonable parameters).

(e) Step (d) essentially tells us that for n large, there is no Nash equilibrium in which every
juror votes strictly according to her signal. What about mixing? Prove that there is no
symmetric Nash equilibrium in which jurors mix if they get a g-signal. [Hint: if they do so,
they must be indifferent when they get a g-signal, so must strictly prefer to acquit when they
get a b-signal. Now show that same argument as in part (d) applies.]

(f) So the only kind of symmetric Nash equilibrium involves C with probability β when the
signal is b and announcing C for sure when the signal is g. Compute this equilibrium and
show that it must have the property that(

1 − q + qβ

p + (1 − p)β

)n−1

=
(1 − p)π(1 − z)

q(1 − π)z
.

[To show this, note that we must have indifference when a b-signal is received. Thus in the
pivotal case corresponding to that signal we must have indifference as well. That is, by part
(b),

Pr(G| signal is b and n − 1 votes for C ) = z.
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Now expand this expression.

(g) Prove that β goes to 1 as n → ∞ (even the innocent signals generate a conviction vote
with high probability).

[3] Here is some more practice along Carlsson-Van Damme and Morris-Shin lines of reasoning.
Consider the following two-player game:

L R
U a + θ, a + θ 0, 0
D 0, 0 b − θ, b − θ

where a and b both lie strictly between 0 and 1, and θ is a random variable distributed
uniformly on [−1, 1]. Use the Carlsson-van Damme / Morris-Shin construction: θ is observed
with some uniform noise on [θ − ε, θ + ε], where ε is a tiny positive number. The noise is iid
across the two players.

[a] Solve the equilibrium strategy of the perturbed game using the techniques studied in class.
Find the limit value of the switch point θ∗ as ε → 0 and evaluate this limit relative to the
values of a and b.

By the way, take special note of this: in the Morris-Shin world, a lot of the argument works
because of reasoning like this: player i thinks that player j thinks that player k thinks that
... But in this model there are only two players! Explain why the above sort of reasoning
still matters.

[b] Apply the same logic to the game

L R
U θ, θ θ, 0
D 0, θ 4, 4

where θ is a random variable on some interval [θ, θ̄], with θ < 0 and θ̄ > 4. Is it true that
(as ε > 0) the critical switch point involves the Pareto-dominant equilibrium being played?
Is this in contrast to the game of part [a], and why or why not?


