
Game Theory Fall 2003
Problem Set 5

[1] Consider an infinitely repeated game with a finite number of actions for each player and a
common discount factor δ. Prove that if δ is close enough to zero then every subgame perfect
equilibrium must involve the play of a static Nash equilibrium after every t-history. Show
that this conclusion may be false if there are infinitely many actions available to each player.

[2] (a) Prove that if the worst punishment to player i in a repeated game is not sustained by
a static Nash equilibrium profile, then player i’s continutaion payoff after the first period of
the punishment must strictly exceed the worst punishment payoff.

(b) Prove that the lifetime normalized payoff of a player (in any equilibrium) cannot drop
below her security level.

[3] (a) For any p ∈ F ∗, the convex hull of the set of one-shot payoffs, and any ε > 0, prove
that there is δ∗ ∈ (0, 1) such that for every δ ∈ (δ∗, 1), there is p′ in the ε-neighborhood of p
and a periodic action path (one that involves only a finite number of distinct action profiles
that periodically recur) that generates a normalized lifetime payoff of p′.

(b) Use this observation to formally add details to the folk theorem that ensure its validity
even when there is no mixed action profile that supports the desired payoff vector.

[4] Establish the following properties of the “support mapping” φ.

[a] φ is isotone in the sense that if E ⊆ E′, then φ(E) ⊆ φ(E′).

[b] If all Ai are compact and fi continuous, φ maps compact sets to compact sets: that is, if
E is a compact subset of F ∗, then φ(E) is compact as well.

[5] Explain why it is easy to describe the set of all perfect equilibrium payoffs in a Bertrand
game with homogeneous goods and constant marginal cost of production, but why this is
harder for a Cournot game. [The next problem takes up Cournot games in some detail.]

[6] In general, calculating maximal punishments isn’t an easy task. But one can make some
headway if one restricts attention to symmetric strategies (in symmetric games). The purpose
of this long problem is to develop some of these ideas in a symmetric game (what follows is
based on Abreu [JET 1986]).

Consider a game G in which everyone has an action set Ai which is given by an interval of
real numbers, unbounded above. Further, assume symmetry (the action set is the same for
everyone). Assume, moreover, that payoff functions are continuous and bounded above, and
symmetric in the sense that for every permutation p of the set of players {1, . . . , n},

fi(a) = fp(i)(ap)

for all i and action vectors a, where ap denotes the action vector obtained by permuting the
indices of a according to the permutation p.
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More conditions on the payoff function follow:

Condition 1. The payoff to symmetric action vectors (captured by the scalar a), denoted
f(a), is quasiconcave, with f(a) → −∞ as a → ∞.

Condition 2. The best payoff to any player when all other players take the symmetric
action a, denoted by d(a), is nonincreasing in a, but bounded below.

A strategy profile σ is strongly symmetric if for every t-history h(t), σi(t)[h(t)] = σj(t)[h(t)]
for all i and j.1

(a) As you can tell, Conditions 1 and 2 are set up to handle something like the case of
Cournot oligopoly. Even though the action sets do not satisfy the compactness assumption,
the equilibrium payoff set is nevertheless compact. How do we prove this?

[a1] First note that a one-shot equilibrium exists. To prove this, use Condition 1 and Kaku-
tani’s fixed point theorem.

[a2] This means that the set of strongly symmetric perfect equilibrium payoffs V is nonempty
(why?). Now, look at the infimum perfect equilibrium payoff. Show that it is bounded below,
using Condition 2. Using Condition 1, show that the supremum perfect equilibrium payoff
is bounded above.

[3] Now show that the paths supporting infimum punishments indeed are well-defined, and
together they form a simple strategy profile which is a SGPE.

[4] Finally, prove the compactness of V by using part [3].

(b) With the above exercise worked out, we can claim that there exists best and worst
symmetric payoffs v∗ and v∗ respectively, in the class of all strongly symmetric SGPE. The
following theorem then applies to these payoffs.
Theorem 1. Consider a symmetric game satisfying Conditions 1 and 2. Let v∗ and v∗
denote the highest and lowest payoff respectively in the class of all strongly symmetric SGPE.
Then

[a] The payoff v∗ can be supported as a SGPE in the following way: Begin in phase I, where
all players take an action a∗ such that

(1 − β)f(a∗) + βv∗ = v∗.

If there are any defections, start up phase I again. Otherwise, switch to a perfect equilibrium
with payoffs v∗.

[b] The payoff v∗ can be supported as a SGPE using strategies that play a constant action a∗
as long as there are no deviations, and by switching to phase 1 (with attendant payoffs v∗) if
there are any deviations.

1Note that the symmetry is “strong” in the sense that players take the same actions after all histories,
including “asymmetric” ones.



3

Prove this theorem.

(c) Notice that by virtue of Theorem 1, the problem of finding the best strongly symmetric
equilibrium therefore reduces, in this case, to that of finding two numbers, representing the
actions to be taken in two phases.

Something more can be said about the punishment phase, under the assumptions made here.
Theorem 2. Consider a symmetric game satisfying Conditions 1 and 2, and let (a∗, a∗) be
the actions constructed to support v∗ and v∗ (see statement of Theorem 1). Then

d(a∗) = v∗

Prove this theorem.

[7] The use of continuation values (from the self-generating set of perfect equilibrium payoffs)
to analyze equilibria of dynamic games has become quite popular in economics, especially
among macroeconomists (see, for instance, Ljungqvist and Sargent’s recent text, Recursive
Macroeconomic Theory). A good example is the mutual insurance model studied by several
authors, among them Kocherlakota (Review of Economic Studies 1996) which is described
in Ljungqvist-Sargent Chapter 15. This problem gives you an introduction to that model.

There are two infinitely-lived agents. The incomes of agents 1 and 2 are given by y1(s) and
y2(s), where s is an exogenously determined state, iid over time. There is a finite set of
states S. The probability of s ∈ S is given by π(s) > 0. Assume y1 and y2 are not perfectly
correlated. Let Y (s) denote aggregate income in state s; i.e., Y (s) = y1(s) + y2(s). Also
assume that both agents are perfectly symmetric in the sense that if some vector of incomes
(a, b) has some probability, the permuted vector (b, a) has exactly the same probability.

Each agent has the same strictly concave smooth utility function u(c), where c is consumption
in that period (assume u′(0) = ∞), and the same discount factor δ ∈ (0, 1).

Income is completely perishable and must be consumed at that date or never.

(a First, forget about any game theory and let us try to understand the set of first-best
income sharing schemes. Begin with just one period. Imagine that you are maximizing the
expected sum of utility of the two players. Show that you would divide Y equally in each
state. More generally, suppose that λ ∈ (0, 1) is the weight on player 1’s expected utility and
1−λ is the weight on player 2’s utility. Now show that the optimal scheme {c1(s), c2(s)} has
the property that

u′(c1(s))/u′(c2(s))
is a constant over all states s. Indeed, under our assumptions, this constancy is the defining
feature of all first-best (static) schemes (assuming c1(s) + c2(s) = Y (s) for all s; i.e., no
output is wasted).

(b) Now suppose that you want to do the same exercise dynamically; i.e., you want to
maximize λIE

∑
t δtu(c1

t ) + (1 − λ)IE
∑

t δtu(c2
t ), subject to the constraint that c1

t + c2
t ≤ Yt

for all t. Show that the result of part (a) now extends to the description:

u′(c1
t (s))/u′(c2

t (s))
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is a constant over all states s and dates t. This constancy is the defining feature of all
first-best (dynamic) insurance schemes.

(c) Now for some game theory. Imagine that we are trying to “support” one of these schemes
as an equilibrium. The resulting description is a repeated game. The actions are as follows.
At each date, after incomes are realized and commonly observed by both agents, each agent
simultaneously and unilaterally transfers some nonnegative amount to the other player (of
course, one or both transfers may be zero). Formally define strategies for this game.

(d) Prove that the strategy profile in which no transfers are ever made in any history is a
subgame-perfect equilibrium of this game, and indeed is the worst subgame perfect equilib-
rium of the game for either player. Let the expected lifetime utility for each player under
this equilibrium be written as A (for “autarky”).

(e) Of course, “better” equilibria may be supportable, with the equilibrium in (d) as a
(perfect) threat. To do this, think of consumption allocation schemes that depend on each
t-history (note that a description of a t-history should also include the current realization of
incomes at date t). For instance, the first-best schemes studied in part (b) can be written as
allocation schemes of this type (formally do so).

(f) Prove that a (possibly history-dependent) scheme is supportable as a subgame perfect
equilibrium of the repeated game if and only if for every date t and every state s,

(1 − δ)u(cj
t (s)) + δIE

∞∑

τ=1

u(cj
t+τ ) ≥ (1 − δ)u(yj(s)) + δA,

for j = 1, 2, where {cj
t+τ} denotes the continuation of the allocation scheme for all future

dates.

(g) Confirm that every first-best scheme which yields a player strictly more than his autarkic
payoff A can be supported as a subgame perfect equilibrium if δ is sufficient close to to 1.
Of all such first-best schmes, which one do you think is supportable for the least restrictions
on the discount factor?

(h) If no first-best scheme is supportable, then continuation values do well in describing what
second-best schemes look like. For this, study Kocherlakota’s paper.

[8] Finally, to keep your interest going in coalitional games, here are a couple of examples
that extend the characteristic function form described in Chatterjee et al . Both are taken
from Ray and Vohra (Games and Economic Behavior 1999). The idea is that characteristic
functions are inadequate in many situations because they do not capture interactions across
players. Often, a better and more general tool is the (transferable utility) partition function,
which describes the aggregate payoff to very coalition, but that could vary depending on
which coalition structure that coalition lives in.

Formally, let N be a set of players. A partition of N is a division of N into disjoint coalitions
π = {S1, . . . , Sm} which exhaust the entire space. A partition function assigns to every
partition π and every coalition S ∈ π a number v(S, π).
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(a) Suppose that three individuals face a linear demand curve for their homogeneous product,
A − bx, where x is the aggregate quantity sold and A, b are positive. Each has a common
marginal cost of production, c. Construct the partition function for all coalition structures.

(b) Now consider a very special bargaining model in which each player can make an offer to
a coalition, just as in class, but must restrict herself (for simplicity) to equal division of that
coalition’s payoffs. What is the equilibrium coalition structure?

(c) Can you re-do this example for 4 or 5 players?

(d) As another example of a partition function game, consider the provision of a public good
by three symmetric agents. Suppose that the three players together can get a total payoff
of 3. If one player stands alone and the other two are together, the standalone player gets
2 and the remainder get a total of 0.5. Finally, assume that if all are separate, each get 0.
Describe the partition function and the equilibrium of the bargaining game.

(e) What happens in the above examples (as δ → 1) if players are not constrained to equal
division but can make arbitrary offers, as in the characteristic function bargaining model
studied in class?

(f) For more on this sort of model, see the Ray-Vohra paper. For the public goods model in
particular, see Ray and Vohra (Journal of Political Economy, 2001).


