
Game Theory Fall 2003
Selected Answers to Problem Set 1

[1] (iii) Suppose, on the contrary, that (U, L) is a pure strategy Nash equilibrium. Then a ≥ e
and b ≥ d.

Case 1: b = d. Then it must be that g > c, otherwise (U, R) would be another Nash
equilibrium. But then f > h, otherwise (D, R) would be Nash. But this means that to avoid
(D, L) being Nash, a > e.

So in this case, a > e and b = d. Now let q be the probability of the Column player playing
L. For all q ∈ (0, 1) but close enough to 1,

qa + (1 − q)c > qe + (1 − q)g,

so playing U for Row is a strictly best response. And if so, Column is indifferent between L
and R (since b = d), so all pairs (p, q) with p = 1 and q sufficiently close to 1 are also Nash,
a contradiction.

Case 2. b > d. But then, because there are no strictly dominant strategies, h ≥ f . But then,
to avoid (D, R) being Nash, it must be that c > g. But there are no dominant strategies,
so that a = e. Now apply Case 1 starting from a = e (instead of b = d) to get a similar
contradiction.

[2] I will do the last example.

L M R
U 1,−2 −2, 1 0, 0
N −2, 1 1,−2 0, 0
D 0, 0 0, 0 1, 1

Of course, (D, R) is a pure strategy Nash equilibrium and there are no other pure strategy
Nash equilibria. To look for mixed Nash, let the column player use the mixed strategy (p, q, r)
(where at least one of p and q is nonzero). Then the payoff to Row from L is p − 2q, from N
is q − 2p, and from R is r. Note that player 1 cannot be indifferent between U and N and
play these as best responses. For indifference means that p − 2q = q − 2p, but then p = q
and the payoff from each is negative, while from playing D it is nonegative.

So the only possibilities are that Row plays a mixture of U and D, or N and D, as best
responses. For the first to happen note that p − 2q = r, so that in particular, p and r must
both be strictly positive. But if Row puts no weight on N , L is dominated by R for Column.
A similar argument holds if Row is hypothesized to play a mixture of N and D as best
responses.

[3] and [4]: Done in class.

[5] Let

Sk+1
i ≡ {si ∈ Sk

i | � ∃σi ∈ M(Sk
i ) s.t. f(σi, s−i) > f(si, s−i) for all s−i ∈ Sk

−i},
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where M(X) is the set of all probabilities over the set X.

First we show that this is equivalent to the recursion

T k+1
i ≡ {si ∈ Sk

i | � ∃σi ∈ Σi s.t. f(σi, s−i) > f(si, s−i) for all s−i ∈ T k
−i},

Proceed inductively. True by assumption for k = 0 (we start from Si in both cases). Suppose
true for some k. Now let us pick any σi ∈ Σ− \M(Sk

i ). Then there exists an index s < k and
σ′

i ∈ M(Ss
i ) such that f(σ′

i, s−i) > f(σi, s−i) for all s−i ∈ Ss
−i (because σi must be placing

positive weight on some dominated pure strategy at some stage s). If this σ′
i happens to be

in M(Sk
i ), stop. Otherwise it is dominated in turn at some stage s′ > s . . . finally we must

get σi” that dominates σ′
i over Sk

−i. Use this to show that T k+1
i must be equal to Sk+1

i .

With this in place, you should be easily able to complete the second step of the equivalence,
which consists in showing that the restriction si ∈ Sk

i can be removed.

[6] No. Look at the game in question [2] above.

[7]–[8] omitted.

[9] (i) Yes, it does matter. In matching pennies, the use of a pure strategy can at best assure
a maxmin payoff of −1, while the use of a 50-50 mixed strategy will assure you 0.

[ii] Obviously,
min
σj

fi(σi, σj) ≤ fi(σ′
i, σ

′
j)

for every pair (σ′
i, σ

′
j), so that

min
σj

fi(σ′
i, σj) ≤ max

σi

fi(σi, σ
′
j)

for every (σ′
i, σ

′
j). But if it is true for every σ′

j , it must be true for the “worst” such choice;
i.e.,

min
σj

fi(σ′
i, σj) ≤ min

σj

max
σi

fi(σi, σj)

for every σ′
i. But if it is true for every σ′

i, it must be true for the “best” such choice; i.e.,

max
σi

min
σj

fi(σi, σj) ≤ min
σj

max
σi

fi(σi, σj).

The question about a strict inequality is ill-posed, sorry. What I meant to say that in general,
a function of two variables will not have the property that the above inequality holds with
equality. For instance, suppose: f(x, y) is defined on two values of x — ax and bx — and two
values of y — ay and by: f(ax, ay) = f(bx, by) = 2, f(ax, by) = 1 and f(bx, ay) = 0. Then
you can check that

max
x

min
y

f(x, y) < min
y

max
x

f(x, y).

For f defined as expected utilities on mixed strategies the equality always holds, as part (iii)
below shows.
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[iii] Let (σ∗
1, σ

∗
2) be a mixed-strategy Nash equilibrium for a zero-sum game. Then

(1) f1(σ∗
1, σ

∗
2) = max

σ1
f1(σ1, σ

∗
2).

Of course, at the same time,

max
σ2

f2(σ1, σ2) ≥ f2(σ1, σ
∗
2)

for every σ1, with equality holding when σ1 = σ∗
1. Because the game is zero-sum, this means

that

(2) min
σ2

f2(σ1, σ2) ≤ f1(σ1, σ
∗
2),

for every σ1, with equality holding when σ1 = σ∗
1. Combining (1) and (2), we see that

f1(σ∗
1, σ

∗
2) is not only the maximum value of f1(σ1, σ

∗
2), but is also the maximum value of

minσ2 f1(σ1, σ2). That is,

(3) f1(σ∗
1, σ

∗
2) = max

σ1
min
σ2

f1(σ1, σ2).

By the same logic,
f2(σ∗

1, σ
∗
2) = max

σ2
min
σ1

f2(σ1, σ2),

but because f1 = −f2, this simply means that

(4) f1(σ∗
1, σ

∗
2) = min

σ2
max

σ1
f1(σ1, σ2).

Now combine (3) and (4) to obtain the result.

[10] Define a two player game by setting the first player’s strategy set to be X, the given
compact convex set, and the second player’s strategy set to be Y , which is the nonnegative
unit simplex. Let f1(x, y) = x ·y − x̂ ·y and f2(x, y) = −[x ·y − x̂ ·y]. Then this is a zero-sum
game.

Notice that every game with payoff functions that are continuous and quasiconcave in one’s
own action admits a pure strategy Nash equilibrium (class lectures). All these assumptions
are satisfied in our case. Therefore our zero-sum game admits a Nash equilibrium in pure
strategies; call it (x∗, y∗).

Now we prove that the solution must have f1(x∗, y∗) = 0. First notice that

max
x

min
y

f1(x, y) ≥ 0,

because player 1 can always choose x = x̂. At the same time, strict inequality cannot hold,
because for any choice of x �= x̂, it must be that xj ≤ x̂j for some coordinate j. [This is
because x̂ is efficient in X.] And for such x, we can always take y to be the jth unit vector.
Therefore

max
x

min
y

f1(x, y) = 0,

and by the earlier problem,
f1(x∗, y∗) = 0.

Interpret y∗ to be p̂, the “supporting vector” we are looking for. Notice that x∗ must be equal
to x̂. Now use the fact that x∗ is a best response to y∗ to complete the argument.
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[11] This is a standard model. We know that for n = 2 there is a unique pure strategy
equilibrium which involves both candidates choosing the median point. For n = 3 there is
no pure strategy equilibrium, which is something very easy to check by exhausting different
cases.

[12] [A] Equilibrium definition: standard.

[B] Suppose that F is an increasing, concave function of the sum of efforts: F (e) = f(
∑n

i=1 ei)
for some increasing differentiable concave f satisfying the Inada endpoint conditions.

The important point here is that you should not blindly write down first-order equality
conditions describing a Nash equilibrium. Suppose you do that here: you will get the absurd
result that

λif
′(

n∑
i=1

ei) = 1,

which, of course, cannot hold simultaneously for all the different values of λi! Of course, once
you see this you will understand right away that in any equilibrium e∗, e∗

i is positive only
if λi = M(�), and consequently, if E∗ ≡ ∑n

i=1 e∗
i , E∗ must maximize M(�)f(E) − E with

respect to E. Thus inefficiency — call it I(�) — is simply Ŝ − M(�)f(E∗) + E∗. It is easy
to check that I(�) is monotonically decreasing in M(�) and indeed, that I(�) → 0 along any
sequence such that M(�) → 1.

[C] + [D] Suppose that F is an increasing concave function of the scale of activity, where scale
is determined by equi-proportional contribution of efforts: F (e) = f(mini ei) for some increas-
ing differentiable concave f satisfying the Inada endpoint conditions. Let � = (λ1, . . . , λn) and
�′ = (λ′

1, . . . , λ
′
n) be two different access inequalities, with the property that mini λi > mini λ

′
i.

Then I(�) < I(�′).

To prove this, note first that in this case we have a continuum of equilibria for each possible
level of access inequality �. These are characterized as follows.

Define m(�) ≡ mini λi. Then for each �, e∗ is an equilibrium vector of efforts if and only if
e∗
1 = e∗

2 = . . . = e∗
n = e (say), and m(�)f ′(e) ≥ 1. Thus

I(�) = Ŝ − m(�)f(e) + ne.

It is easy to check that I(�) is a decreasing function of m(�).

You should be easily able to check that ineffiency never goes to zero in this scenario (unlike
in Part [B]).

[13] [A] Consider the maximization problem:

max
n∑

i=1

[u(ci) − v(ri)]

subject to
n∑

i=1

ci ≤ f(
n∑

i=1

ri).
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Of course you can use Lagrangeans to do this, but a simpler way is to first note that all ci’s
must be the same. For if not, transfer some from a larger ci to a smaller cj : by the strict
concavity of u the maximand must go up. The argument that all the ri’s must be the same is
just the same: again, proceed by contradiction and transfer some from larger ri to smaller rj .
By the strict concavity of −v the maximand goes up. Note in both cases that the constraint
is unaffected.

So we have the problem:

max u

(
f(nr)

n

)
− v(r)

which (for an interior solution) leads to the necessary and sufficient first-order condition

u′(c∗)f ′(nr∗) = v′(r∗).

[B] The (symmetric) equilibrium values ĉ and r̂ will satisfy the FOC

(1/n)u′(ĉ)f ′(nr̂) = v′(r̂),

[We showed in class that there are no asymmetric equilibria.] It is easy to see that this
leads to underproduction (and underconsumption) relative to the first best. For if (on the
contrary) nr̂ ≥ nr∗, then ĉ ≥ c∗ also. But then by the curvature of the relevant functions,
both sets of FOCs cannot simultaneously hold.

[C] First think it through intuitively. As n is reduced there should be a direct accounting
effect: total effort should come down simply because there are less people. But then there
is the incentive effect: each person puts in more effort because they will have to share the
output with a smaller number of people. Now let’s see this a bit more formally. Let R̂ denote
total equilibrium effort, and rewrite the FOC as

(1/n)u′(f(R̂)/n)f ′(R̂) − v′(R̂/n) = 0.

Now we take derivatives. For ease in writing, we will write u′, f ′′, etc., with the understanding
that all these are evaluated at the appropriate equilibrium values. Doing this, we have

− 1
n2 u′f ′ +

1
n

u′′f ′
[
− f

n2 +
f ′

n

dR̂

dn

]
+

1
n

u′f ′′ dR̂

dn
− v′′

[
1
n

dR̂

dn
− R̂

n2

]
= 0,

and rearranging,

dR̂

dn
=

1
n2 u′f ′ + 1

n3 u′′f ′f − 1
n2 v′′R̂

1
n2 u′′f ′2 + 1

nu′f ′′ − 1
nv′′ .

The denominator is unambiguously negative. The numerator is ambiguous for the reasons
discusssed informally above.

[D] Each person chooses r to maximize

u

([
β(1/n) + (1 − β)

r

r + R−

]
f(r + R−)

)
− v(r)
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where R− denotes the sum of other efforts. Let (c, r) denote the best response. Write down
the FOC (which are necessary and sufficient for a best response — why?):

u′(c)
([

β(1/n) + (1 − β)
r

r + R−

]
f ′(r + R−) + f(r + R−)

(1 − β)R−

(r + R−)2

)
= v′(r)

Now impose the symmetric equilibrium condition that (c, r) = (c̃, tr) and R− = (n − 1)r̃.
Using this in the FOC above, we get

u′(c̃)
[

1
n

f ′(nr̃) +
(1 − β)(n − 1)f(nr̃)

n2r̃

]
= v′(r̃).

Examine this for different values of β. In particular, at β = 1 we get the old equilibrium
which is no surprise. The interesting case is when β is at zero (all output divided according
to work points). Then you should be able to check that

u′(c̃)f ′(nr̃) < v′(r̃)!

[Hint: To do this, use the strict concavity of f , in particular the inequality that f(x) > xf ′(x)
for all x > 0.]

But the above inequality means that you have overproduction relative to the first best. To
prove this, simply run the underproduction proof in reverse and use the same sort of logic.

You should also be able to calculate the β that gives you exactly the first best solution.
Notice that it depends only on the production function and not on the utility function.

[E] Think about it!

[14] Given the contribution R−i of all persons other than i, individual i will choose ri to
maximize

u(wi − ri) + g(ri + R−i).

In Nash equilibrium, therefore

(5) u′(wi − ri) ≥ g′(R)

with equality if ri > 0 (where R is the aggregate contribution). This condition must simul-
taneously hold for all i.

[A] It follows from (5) that if two individuals i and j both make strictly positive contributions,

u′(wi − ri) = u′(wj − rj).

Since marginal utility is strictly decreasing, this must mean that

wi − ri = wj − rj

whenever ri and rj are both positive. Wealth inequalities cancel out.

[B] Under the parametric specifications, notice that (5) reduces to

(6) wi − ri ≤ 2
√

r1 + r2
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for i = 1, 2, with equality if ri > 0. Now let us keep total wealth constant: w1 + w2 = W ,
but move around the distribution. Just before we do that, notice that if both make positive
contribuutions and we add up (6) over i = 1 and i = 2, we see that

W = R + 4
√

R

so that total contributions is pinned down as a function of total wealth. Note carefully that
R < W (as it should be).

Now return to moving around the distribution. Start with w1 = w2. Certainly both con-
tributions here are positive and equal to R/2 in fact. Now start raising w1 at the expense
of w2. Notice that as long as w2 > R, the system is uniquely solved by both making positive
contributions that add up to R.

The situation changes when w2 hits R. At this point r2 drops to zero and r1 is at the value
R. A further redistribution in favor of person 1 will now keep r2 at zero, so that person 2’s
consumption of the private good is precisely w2. Person 1 will now be the sole contributor.
By using (6) for i = 1, we see that

w1 = r1 + 2
√

r1

so that r1 and therefore total contributions) rise with added inequality.


