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The One-Shot Deviation Principle

The one-shot deviation principle is fundamental to the theory of extensive games.
It was originally formulated by David Blackwell (1965) in the context of dynamic
programming. As the strategy of other players induces a normal maximization
problem for any one player, we can formulate the principle in the context of a
single-person decision tree.

Consider a possibly infinite tree. A path y is an ordered collection of nodes in
the tree, with adjacent entries connected by immediate succession, and having the
property that if y has a last entry, it must be a terminal node of the tree. Note:
paths don’t necessarily start at the initial node of the tree.

Every path y and node x in y induces a “subpath” yx with initial node x in the
obvious way. Two paths y and y′ diverge at x if they share the same nodes up to
x but have distinct subpaths thereafter.

To each path y attach a return π(y). We make the following assumptions on π:

[A.1] (consistency) If π(y) ≥ π(y′), and if y and y′ diverge at x, then π(yx) ≥ π(y′
x).

[A.2] (continuity) Fix any path y. For every ε > 0, there exists an integer N
such that if n ≥ N and if another path y′ shares the first n nodes as y, then
|π(y) − π(y′)| < ε.

Remarks:

(a) Finite decision trees with payoffs at terminal nodes automatically satisfy [A.1]
and [A.2].

(b) Infinite optimization problems with discounting and additively separable payoffs
also satisfy [A.1] and [A.2]. This is the case studied in Blackwell (1965).

(c) If nodes are interpreted as information sets and payoffs as expected payoffs
then stochastic decision problems (or responses to opponent behavior strategies)
can easily be included in this framework.

A strategy σ assigns to each non-terminal node x a probability distribution over
A(x), the set of immediate successors of x. Starting from any node x, a strategy
induces probability distributions over paths with initial node x in the obvious way.
Define π(σ, x) to be the expectation of π(y) over all such paths.

A strategy σ is optimal if there is no strategy σ′ and node x such that π(σ′, x) >
π(σ, x).

For any strategy σ, node x, and any action (node) a ∈ A(x), define σa to be the
strategy obtained by simply substituting the deterministic choice a at x, instead of
what was prescribed by σ, and leaving all else unchanged.1

A strategy σ is unimprovable if there is no node x, a ∈ A(x) and corresponding
σa such that π(σa, x) > π(σ, x).

Observe that σa is a special strategy, differing as it does from σ by only “a one-
shot deviation” at the node x. It is therefore obvious that an optimal strategy is
unimprovable. The converse is what we’re after:

1I don’t use x in the notation for the alternative strategy because each action (node) has a
distinct name and a unique immediate predecessor, so x is identifiable from this information.
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Theorem 1. Under [A.1] and [A.2], an unimprovable strategy must be optimal.
Proof. Suppose, on the contrary, that σ is unimprovable, and yet it is not optimal.
Then there exists σ′ and node x0 such that π(σ′, x0) > π(σ, x0). Because stochastic
strategies add nothing to best payoff, this is equivalent to the following assertion:
there is a path y starting from x0 such that

π(y) ≥ π(σ, x0) + 2ε

for some ε > 0. Now using [A.2], choose an integer N such that if any path y′

starting from x0 shares the first N + 1 nodes as y,

π(y′) ≥ π(y) − ε.

For all such paths y′, it follows from the two inequalities above that

π(y′) ≥ π(σ, x0) + ε.

Call the first N + 1 nodes of y x0, . . . , xN . In particular, this means that a finite
number of one-shot deviations at the nodes xi, with σ applied everywhere else, is
enough to generate a payoff improvement at x0.

Define a family of N different strategies αi, for i = 0, . . . , N −1, by the property
that αi chooses xj+1 at the node xj , for every j between 0 and i, and concides with
σ elsewhere. Then the conclusion of the previous paragraph informs us that

(1) π(αN−1, x0) > π(σ, x0).

Notice that αN−2 fully coincides with σ from the node xN−1 “downwards”, while
αN−1 is a one-shot deviation from σ at that node. Because σ is unimprovable by
assumption, we have

π(αN−2, xN−1) = π(σ, xN−1) ≥ π(αN−1, xN−1),

and applying [A.1], we conclude that — since αN−2 and αN−1 will share the same
nodes x0, . . . , xN−1 along every path generated by the two —

(2) π(αN−2, x0) ≥ π(αN−1, x0).

Combining (1) and (2), we may conclude that

(3) π(αN−2, x0) > π(σ, x0).

Proceeding step by step in this way (and using unimprovability and [A.1] each
time), we can finally see that

(4) π(α0, x0) > π(σ, x0).

But α0 is just a one-shot deviation from σ. Formally, α0 = σx1 . Therefore (4)
contradicts the unimprovability of σ. �
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