Development Economics

Slides 12

Debraj Ray, NYU

Inequality and Development: Evolving Together

Endowments

- \Rightarrow Supply and demand for goods
- \Rightarrow Equilibrium
- \Rightarrow Wages, rents, profits \Rightarrow human, physical capital accumulation

\Rightarrow Endowments

A Little Taxonomy For Sources of Inequality

- 1. Savings: How do savings rates change with income?
- 2. **Rates of Return**: Variations in the rate of return to capital across people and across wealth levels.
- 3. Occupational Choice: Can wealth affect selection into occupations?
- 4. **Demand**: Income distribution affects composition of demand, and therefore individual incomes.
- 5. **Politics and Policies**: Income distributions will affect taxes on labor and capital income via political lobbies.

Individual accumulation equations:

$$k_{t+1} = y_t - c_t + k_t,$$
 (1)

and

$$y_t = f(k_t, \theta_t), \tag{2}$$

where θ_t is some macro state:

- Perhaps external to the economy
- More often external to individual but not to the economy.

Examples:

Examples:

Pure capital income: $f(k_t) = r(\theta_t)k_t$.

Examples:

- Pure capital income: $f(k_t) = r(\theta_t)k_t$.
- Wage earning + capital income: $f(k_t) = w(\theta_t) + r(\theta_t)k_t$.

Examples:

- Pure capital income: $f(k_t) = r(\theta_t)k_t$.
- Wage earning + capital income: $f(k_t) = w(\theta_t) + r(\theta_t)k_t$.
- Skill accumulation over occupations:

$$egin{aligned} f(k) &= w_u(heta) ext{ for } k < ar x \ &= w_s(heta) ext{ for } k > ar x. \end{aligned}$$

Examples:

- Pure capital income: $f(k_t) = r(\theta_t)k_t$.
- Wage earning + capital income: $f(k_t) = w(\theta_t) + r(\theta_t)k_t$.
- Skill accumulation over occupations:

$$f(k) = w_u(\theta)$$
 for $k < \bar{x}$
= $w_s(\theta)$ for $k > \bar{x}$.

Can also be used for setup costs, or multiple occupations.

The Household's "Production Function"

Investments/Occupations

The Household's "Production Function"

Investments/Occupations

Differential Savings Rates

Permanent versus temporary income

Friedman (1957), see discussion in Dynan-Skinner-Zeldes (2004)

Estimates from Survey of Consumer Finances (SCF):

	6-Yr Income Average	Instrumented By
		Vehicle Consumption
Quintile 1	1.4	2.8
Quintile 2	9.0	14.0
Quintile 3	11.1	13.4
Quintile 4	17.3	17.3
Quintile 5	23.6	28.6
Top 5%	37.2	50.5
Top 1%	51.2	35.6

Source: Dynan-Skinner-Zeldes (2004), they provide other estimates

A very rough calibration for pure capital owners:

- Average rate of growth in the economy is g.
- Rate of return on capital is *r*.
- The capitalists save s_R of their income.

A very rough calibration for pure capital owners:

- Average rate of growth in the economy is g.
- Rate of return on capital is *r*.
- The capitalists save s_R of their income.
- So if initial rich share is x(0), then t periods later it will be

$$x(t) = x(0) \left(\frac{1+s_R r}{1+g}\right)^t$$

That is,

$$r = \frac{[x(t)/x(0)]^{1/t}(1+g) - 1}{s_R}$$

$$r = \frac{[x(t)/x(0)]^{1/t}(1+g) - 1}{s_R}$$

- Some quick calculations for top 10% in the US:
- $x_0 = 1/3$ in 1970, rises to $x_t = 47/100$ in 2000.
- Estimate for g: 2% per year.
- Estimate from Dynan et al for s_R : 35% (optimistic).
- Can back out for r: r = 9.7%.
- Possible, but much higher than the inflation-adjusted rate of return on capital, including dividends (around 6.5%).

$$r = \frac{[x(t)/x(0)]^{1/t}(1+g) - 1}{s_R}$$

Similar calculations for top 1% in the US:

- $x_0 = 8/100$ in 1980, rises to $x_t = 18/100$ in 2005.
- Estimate for g: 2% per year.
- Estimate from Dynan et al for s_R : 51%.
- Can back out for r: r = 10.5%.
- Again, there is more going on than just savings differentials.

$$r = \frac{[x(t)/x(0)]^{1/t}(1+g) - 1}{s_R}$$

Try the top 0.1% for the United States:

- $x_0 = 2.2/100$ in 1980, rises to $x_t = 8/100$ in 2007.
- Estimate for g: 2% per year.
- If these guys also save at 0.5, then r = 14.4%!
- If they save 3/4 of their income, then r = 9.6%.

$$r = \frac{[x(t)/x(0)]^{1/t}(1+g) - 1}{s_R}$$

Slightly better job for Europe, but not much. Top 10%:

- $x_0 = 29/100$ in 1980, rises to $x_t = 35/100$ in 2010.
- Estimate for g: 2% per year.
- Estimate from Dynan et al for s_R : 35%.
- Can back out for r: r = 7.5%.
- Very high relative to *r* in Europe over this period.

$$r = \frac{[x(t)/x(0)]^{1/t}(1+g) - 1}{s_R}$$

Finally, top 1% for the UK:

- $x_0 = 6/100$ in 1980, rises to $x_t = 15/100$ in 2005.
- Estimate for g: 2% per year.
- Estimate from Dynan et al for s_R : 51%.
- Can back out for r: r = 11.4%.

What Explains the High Rates of Return to the Rich?

Two broad groups of answers:

- The rich have access to better information on rates of return
- The rich have physical access to better rates of return.

Information: Investing in Investment

This section is omitted for the course.

- The greater is wealth, the more effort in finding good rates of return on it.
- Simplest model:

and

$$\sum_{t=0}^{\infty} \delta^t c_t^{1-\sigma},$$

where $0<\sigma<1$, $0<\delta<1$, and

$$c_t = \underbrace{(1+r_{t-1})F_{t-1}}_{\text{old wealth + return}} + \underbrace{w(1-e_t)}_{\text{wages on } 1-e \text{ time}} - \underbrace{F_t}_{\text{new wealth}},$$

$$r_t = \beta e_t$$

F: financial wealth, w: wage rate, and e: informational effort.

Information: Investing in Investment

Use F_t to equate marginal benefits over time:

$$\left(\frac{c_{t+1}}{c_t}\right)^{\sigma} = \delta(1+r_t)$$

Use e_t to equate marginal benefits over time:

$$\left(\frac{c_{t+1}}{c_t}\right)^{\sigma} = \delta \frac{F_t}{w}\beta.$$

- Proposition. Individuals with a higher ratio of F to w earn a higher rate of return, and grow faster.
- Proof. Combine the two equations above to see that for all t,

$$1 + r_t = \frac{F_t}{w}\beta.$$

Or you can have your cake and eat it too. Consider

$$c_t = (1 + r_{t-1})F_{t-1} + w - z_t - F_t,$$

where $r_t = \gamma z_t$ (e.g., paying an expert to do your research).

• The *z* that equates marginal benefits is given by

$$\left(\frac{c_{t+1}}{c_t}\right)^{\sigma} = \delta F_t \gamma$$

- Proposition. Those with higher *F* earn higher rates of return.
- PS: Contrast the two propositions.

Back to course material

Why might wealth affect access to high rates of return?

- Risk-taking
- Stock markets
- Politics (Sokoloff-Engerman on Latin America)
- Imperfect capital markets:

Inability to seize opportunities with startup costs

This last item will be our focus here.

- People indexed on [0, 1]: all identical except for their initial wealth.
- Choose to become workers or entrepreneurs.
- Startup cost *S* for entrepreneurship.

- People indexed on [0, 1]: all identical except for their initial wealth.
- Choose to become workers or entrepreneurs.
- Startup cost *S* for entrepreneurship.
- Entrepreneurs have a production function $f(\ell) = A\ell^{\alpha}$.
- They hire workers at wage w to maximize profit:

$$A\ell^{\alpha} - w\ell$$

w adjusts to equate supply and demand.

Output net of setup costs: Choose n to maximize

$$\max_{n} nA\left(\frac{1-n}{n}\right)^{\alpha} - nS(1+r)$$

where r is rate of return on alternative use of funds invested in startup.

Output net of setup costs: Choose n to maximize

$$\max_{n} nA\left(\frac{1-n}{n}\right)^{\alpha} - nS(1+r)$$

where r is rate of return on alternative use of funds invested in startup.

First order condition for maximization of net output:

$$A\left(\frac{1-n^{*}}{n^{*}}\right)^{\alpha} - \frac{\alpha}{n^{*}}A\left(\frac{1-n^{*}}{n^{*}}\right)^{\alpha-1} = S(1+r).$$
(3)

First order condition for maximization of net output:

$$A\left(\frac{1-n^{*}}{n^{*}}\right)^{\alpha} - \frac{\alpha}{n^{*}}A\left(\frac{1-n^{*}}{n^{*}}\right)^{\alpha-1} = S(1+r).$$
 (3)

Can this solution be decentralized? Yes, if credit markets are perfect.

Decentralized First-Best Under Perfect Credit Markets

- Market equilibrium with *n* entrepreneurs and wage *w*:
- Because credit markets are perfect, profits equal wages:

$$A\left(\frac{1-n}{n}\right)^{\alpha} - w\frac{1-n}{n} - S(1+r) = w,$$
(4)

Wages equal marginal product:

$$w = \alpha A \left(\frac{1-n}{n}\right)^{\alpha-1} \tag{5}$$

Decentralized First-Best Under Perfect Credit Markets

- **Market equilibrium** with *n* entrepreneurs and wage *w*:
- Because credit markets are perfect, profits equal wages:

$$A\left(\frac{1-n}{n}\right)^{\alpha} - w\frac{1-n}{n} - S(1+r) = w,$$
(4)

Wages equal marginal product:

$$w = \alpha A \left(\frac{1-n}{n}\right)^{\alpha-1} \tag{5}$$

Substitute (5) into (4):

$$A\left(\frac{1-n}{n}\right)^{\alpha} - \frac{\alpha}{n}A\left(\frac{1-n}{n}\right)^{\alpha-1} = S(1+r).$$
(6)

Compare (6) with (3) to see that *n* equals *n**.

The problem of collateral and repayment:

- The problem of collateral and repayment:
- Example:
- My assets = 100,000; startup costs = 200,000.
- Business hires 50 workers, pays them 5,000 each
- Revenue = 500,000.
- After one period, repay. Interest rate = 10%.
- If default, then:
- Half profits seized plus expected jailtime worth 60,000.

To pay or not to pay?

Items	Repay	Default
Principal & Interest	220,000	0
Collateral Credit	110,000	0
Jail	0	60,000
Seizure of Profits	0	125,000
Total	110,000	185,000

Repay if wealth/collateral is 100,000.

To pay or not to pay?

Items	Repay	Default
Principal & Interest	220,000	0
Collateral Credit	22,000	0
Jail	0	60,000
Seizure of Profits	0	125,000
Total	198,000	185,000

- Default if wealth/collateral is 20,000.
- Note: It is the same person in both cases!

More generally:

$$W \geq S - \frac{F + \lambda \left\{f(\ell) - w\ell\right\}}{1 + r}$$

- where W = wealth
- S = setup cost
- F = jail/fines
- w = wage rate
- $\ell = labor$
- r =interest rate
- $f(\ell) =$ produced output.

Entrepreneurship with Imperfect Capital Markets

Credit access determined by wage rate and wealth:

Threshold defined by
$$W(w) = S - \frac{F + \lambda \{f(\ell) - w\ell\}}{1 + r}$$
.

Entrepreneurship with Imperfect Capital Markets

Credit access determined by wage rate and wealth:

Threshold defined by
$$W(w) = S - \frac{F + \lambda \{f(\ell) - w\ell\}}{1 + r}$$
.

This generates supply and demand curves for labor:

This generates supply and demand curves for labor:

Supply curve mirrors the "lack of access" diagram.

This generates supply and demand curves for labor:

Demand curve is "product" of access and firm demand for labor.

- Supply curve mirrors the "lack of access" diagram.
- Demand curve is "product" of access and firm demand for labor.

Three regimes:

- Inefficiency in Panels A and B compared to the social planner's outcome.
- Efficiency in Panel C.

Inequality and Inefficiency

Does inequality hinder efficiency or move the system towards it?

It depends on how poor the economy is to begin with.

Inequality and Inefficiency

Does inequality hinder efficiency or move the system towards it?

It depends on how poor the economy is to begin with.

Inequality helps when average wealth levels are relatively low.

Inequality and Inefficiency

Does inequality hinder efficiency or move the system towards it?

It depends on how poor the economy is to begin with.

Inequality hurts when average wealth levels are relatively high.

- We studied a small set of topics on inequality and development
- Differential savings rates
- Differential access to occupations via imperfect capital markets

- We studied a small set of topics on inequality and development
- Differential savings rates
- Differential access to occupations via imperfect capital markets
- When markets are imperfect, inequality matters!
- In very poor societies, can create partial efficiency gains
- In richer societies, causes efficiency losses
- Traced to the imperfection of credit markets (our next topic).