Development Economics

Slides 10

Debraj Ray, NYU

Acemoglu, D., Johnson, S. and J. Robinson (2001), "The Colonial Origins of Comparative Development: An Empirical Investigation," *American Economic Review* **91**, 1369–1401.

Alesina, A. Giuliano, P. and N. Nunn (2013), "On the Origins of Gender Roles: Women and the Plough," *Quarterly Journal of Economics* **128**, 469-530..

For other papers, see syllabus.

Colonial Origins of Comparative Development

AJR measure of institutions: "protection against expropriation."

- Political Risk Services publishes this data.
- One could argue that this is a very narrow measure, but anyway ...

Colonial Origins of Comparative Development

AJR measure of institutions: "protection against expropriation."

- Political Risk Services publishes this data.
- One could argue that this is a very narrow measure, but anyway ...

The regression they're interested in:

$$y_i = C + \beta R_i + \mathbf{X}'_i \mathbf{b} + \epsilon_i$$

where:

- y_i is log per-capita GDP
- *R_i* is "protection against expropriation"
- X is a vector of country characteristics (latitude, regional membership).

OLS Regression from AJR

	Whole world (1)	Base sample (2)	Whole world (3)	Whole world (4)	Base sample (5)	Base sample (6)	Whole world (7)	Base sample (8)
]	95	Depender is log or worker	nt variable utput per in 1988				
Average protection against expropriation risk, 1985–1995	0.54 (0.04)	0.52 (0.06)	0.47 (0.06)	0.43 (0.05)	0.47 (0.06)	0.41 (0.06)	0.45 (0.04)	0.46 (0.06)
Latitude			0.89 (0.49)	0.37 (0.51)	1.60 (0.70)	0.92 (0.63)		
Asia dummy				-0.62 (0.19)		-0.60 (0.23)		
Africa dummy				-1.00 (0.15)		-0.90 (0.17)		
"Other" continent dummy				-0.25 (0.20)		-0.04 (0.32)		
R^2 Number of observations	0.62 110	0.54 64	0.63 110	0.73 110	0.56 64	0.69 64	0.55 108	0.49 61

Notes: Dependent variable: columns (1)–(6), log GDP per capita (PPP basis) in 1995, current prices (from the World Bank's World Development Indicators 1999); columns (7)–(8), log output per worker in 1988 from Hall and Jones (1999). Average protection against expropriation risk is measured on a scale from 0 to 10, where a higher score means more protection against expropriation, averaged over 1985 to 1995, from Political Risk Services. Standard errors are in parentheses. In regressions with continent dummies, the dummy for America is omitted. See Appendix Table A1 for more detailed variable definitions and sources. Of the countries in our base sample, Hall and Jones do not report output per worker in the Bahamas, Ethiopia, and Vietnam.

Accompanying Diagram to OLS Regression

- Reverse Causation:
- Richer countries more protected from expropriation
- Richer countries perceived to have more protections

- Reverse Causation:
- Richer countries more protected from expropriation
- Richer countries perceived to have more protections
- Omitted Variables:
- Legal heritage, government policy, entrepreneurship

- Reverse Causation:
- Richer countries more protected from expropriation
- Richer countries perceived to have more protections
- Omitted Variables:
- Legal heritage, government policy, entrepreneurship
- Measurement Error
- Protection measured with noise, especially in developing countries

- Proposed instrument built from the logical chain:
- (potential) settler mortality \Rightarrow settlements \Rightarrow early institutions \Rightarrow current institutions \Rightarrow current performance.
- Use mortality rates of soldiers, bishops, and sailors in the colonies.

	Base sample (1)	Base sample (2)	Base sample without Neo-Europes (3)	Base sample without Neo-Europes (4)	Base sample without Africa (5)	Base sample without Africa (6)	Base sample with continent dummies (7)	Base sample with continent dummies (8)	Base sample, dependent variable is log output per worker (9)
			Panel A: Two-	Stage Least Squ	ares				
Average protection against expropriation risk 1985–1995 Latitude Asia dummy Africa dummy "Other" continent dummy	0.94 (0.16)	1.00 (0.22) -0.65 (1.34)	1.28 (0.36)	1.21 (0.35) 0.94 (1.46)	0.58 (0.10)	0.58 (0.12) 0.04 (0.84)	$\begin{array}{c} 0.98 \\ (0.30) \end{array}$	$\begin{array}{c} 1.10\\ (0.46)\\ -1.20\\ (1.8)\\ -1.10\\ (0.52)\\ -0.44\\ (0.42)\\ -0.99\end{array}$	0.98 (0.17)

Panel B: First Stage for Average Protection Against Expropriation Risk in 1985-1995

Log European settler mortality	-0.61	-0.51	-0.39	-0.39	-1.20	-1.10	-0.43	-0.34	-0.63
Latitude	(0.13)	(0.14) 2.00	(0.13)	(0.14) -0.11	(0.22)	(0.24) 0.99	(0.17)	(0.18) 2.00	(0.13)
Asia dummy		(1.34)		(1.50)		(1.43)	0.33	(1.40) 0.47	
A.C							(0.49)	(0.50)	
Ainca dummy							(0.41)	(0.41)	
"Other" continent dummy							1.24	1.1	
R^2	0.27	0.30	0.13	0.13	0.47	0.47	0.30	0.33	0.28

What sort of magnitude are we talking about?

- Two countries with different expropriation risk: Nigeria and Chile.
- The 2SLS estimate predicts a 7-times difference in per-capita income.
- Not implausible: Chile around 11 times as rich at time of study

What sort of magnitude are we talking about?

- Two countries with different expropriation risk: Nigeria and Chile.
- The 2SLS estimate predicts a 7-times difference in per-capita income.
- Not implausible: Chile around 11 times as rich at time of study
- Is the instrument believable?
- Main threat to exclusion restriction is the disease environment.
- Malaria comes particularly to mind.

		Instrumenting only for average protection against expropriation risk					Instrumenting for all right-hand-side variables			Yellow fever instrument for average protection against expropriation risk	
		I	Panel A:	Two-Stage	e Least Sq	uares					
Average protection against expropriation risk, 1985–1995 Latitude	0.69 (0.25)	0.72 (0.30) -0.57 (1.04)	0.63 (0.28)	0.68 (0.34) -0.53 (0.97)	0.55 (0.24)	0.56 (0.31) -0.1 (0.95)	0.69 (0.26)	0.74 (0.24)	0.68 (0.23)	0.91 (0.24)	0.90 (0.32)
Malaria in 1994	-0.57 (0.47)	-0.60 (0.47)					-0.62 (0.68)				
Life expectancy			0.03 (0.02)	0.03 (0.02)				0.02 (0.02)			
Infant mortality					-0.01 (0.005)	-0.01 (0.006)			-0.01 (0.01)		

Panel B: First Stage for Average Protection Against Expropriation Risk in 1985-1995

Log European settler mortality	-0.42	-0.38	-0.34	-0.30	-0.36	-0.29	-0.41	-0.40	-0.40		
Latitude	(0.19)	(0.19) 1.70 (1.40)	(0.17)	(0.18) 1.10 (1.40)	(0.18)	(0.19) 1.60 (1.40)	(0.17) -0.81 (1.80)	(0.17) -0.84 (1.80)	(0.17) -0.84 (1.80)		
Malaria in 1994	-0.79 (0.54)	-0.65 (0.55)		()		()	()	()	()		
Life expectancy			0.05	0.04 (0.02)							
Infant mortality			(/	()	-0.01 (0.01)	-0.01 (0.01)					
Mean temperature					()	()	-0.12	-0.12	-0.12		
Distance from coast							0.57	0.55	0.55		
Yellow fever dummy							(0.51)	(0.52)	(0.52)	-1.10	-0.81
R^2	0.3	0.31	0.34	0.35	0.32	0.34	0.37	0.36	0.36	0.10	0.32

Alesina-Giuliano-Nunn QJE 2013

Tests the famous hypothesis of Esther Boserup:

- Modern gender roles depend on traditional agricultural practices.
- Specifically, shifting cultivation versus the use of the plough.
- Latter requires greater body strength, favors men.
- Also less need for weeding.

TRADITIONAL PLOUGH USE AND FEMALE PARTICIPATION IN PRE-INDUSTRIAL AGRICULTURE											
	(1) Depender	(1) (2) (3) (4) (5) (6) Dependent variable: Traditional participation of females relative to males in the foll									
	Overall agriculture		Land clearance	Soil preparation	Planting	Crop tending	Harvesting				
Mean of dep. var.	3.04	2.83	1.45	2.15	2.86	3.16	3.23				
Traditional plough agriculture	-0.883*** (0.225)	-1.136^{***} (0.240)	-0.434** (0.197)	-1.182^{***} (0.320)	-1.290*** (0.306)	-1.188^{***} (0.351)	-0.954^{***} (0.271)				
Ethnographic controls Observations Adjusted B-squared	yes 660 0 13	yes 124 0 19	yes 129 0 14	yes 124 0 10	yes 131 0.09	yes 122 0 13	yes 131 0 16				
R-squared	0.14	0.23	0.14	0.14	0.13	0.18	0.20				

Alesina-Giuliano-Nunn 2013.

"Societies characterized by plough agriculture, and the resulting gender-based division of labor, developed the belief that the natural place for women is within the home. These cultural beliefs tend to persist even if the economy moves out of agriculture, affecting the participation of women in activities performed outside the home, such as market employment, entrepreneurship, or participation in politics." Alesina-Giuliano-Nunn 2013.

"Societies characterized by plough agriculture, and the resulting gender-based division of labor, developed the belief that the natural place for women is within the home. These cultural beliefs tend to persist even if the economy moves out of agriculture, affecting the participation of women in activities performed outside the home, such as market employment, entrepreneurship, or participation in politics."

Obvious strategy: regress gender norms today on earlier use of plough.

- We have pre-historical data on plough use, and
- Modern surveys of gender roles and female participation in labor force.

Pre-industrial plough use:

- George Murdock's Ethnographic Atlas, data on 1265 ethnic groups.
- Contains data on plough use for 1156 ethnicities, mainly before 1950.
- 997: no plough, 141: aboriginal plough, 18: after European contact.

Pre-industrial plough use:

- George Murdock's Ethnographic Atlas, data on 1265 ethnic groups.
- Contains data on plough use for 1156 ethnicities, mainly before 1950.
- 997: no plough, 141: aboriginal plough, 18: after European contact.

Various controls:

- Historical: domesticated animals, population density, jurisdictional hierarchies, group location
- Contemporary: per-capita GDP

Data

Matching present to past:

- *Ethnologue*: Current geographical distribution of 7.612 living languages.
- Connect these to ethnic groups in Murdock's Atlas.
- Landscan: Population estimates by small grid cells.
- Average these to create ancestral plough use by district or country.

Data

Matching present to past:

- *Ethnologue*: Current geographical distribution of 7.612 living languages.
- Connect these to ethnic groups in Murdock's Atlas.
- Landscan: Population estimates by small grid cells.
- Average these to create ancestral plough use by district or country.
- Measure of female gender roles today:
- labor force participation
- firm ownership
- participation in national politics

FIGURE II

Traditional Plough Use among the Ethnic/Language Groups Globally

Specification (country level):

$$y_c = \alpha + \beta \mathsf{Plough}_c + \mathbf{X}_c^{\mathbf{H}} \mathbf{\Gamma} + \mathbf{X}_c^{\mathbf{C}} \mathbf{\Pi} + \varepsilon_c,$$

where:

 y_c is the outcome of interest, and

 $\mathbf{X}_c^{\mathbf{H}}$ and $\mathbf{X}_c^{\mathbf{C}}$ are historical and contemporary controls.

	(1)	(2)	(3)	(4) Dependent	(5) variable:	(6)	(7)	(8)
	Female labor force participation in 2000		Share of firm ownership,	s with female 2003–2010	Share of polit held by won	ical positions nen in 2000	Averag size (e effect AES)
Mean of dep. var.	51.	.35	35	.17	11.	83	2.3	31
Traditional plough use	-12.401^{***} (2.964)	-12.930^{***} (3.537)	-15.241^{***} (4.060)	-16.587^{***} (4.960)	-4.821^{***} (1.782)	-5.129^{**} (2.061)	-0.743^{***} (0.080)	-0.845^{***} (0.091)
Historical controls:		(,	(((,
Agricultural suitability	6.073 (3.696)	7.181* (4.175)	0.803 (5.447)	4.322 (6.071)	2.198 (2.605)	1.081	0.262^{*}	0.342^{**}
Tropical climate	-9.718^{***}	-10.906^{***}	(0.441) -10.432^{***} (3.762)	-3.712	-6.086^{***}	-4.169^{*}	-0.362^{***}	-0.06
Presence of large animals	-2.015	-2.166	2.707	5.610	-5.718	-4.688	0.005	0.201
Political hierarchies	(5.372) 0.779	(6.072) 1.181	(9.745) 1.128	(10.417) 0.207	(3.565) 0.744	(4.132) 0.656	(0.121) 0.102**	(0.146) 0.070*
Economic complexity	(1.515) 1.157 (0.702)	(1.482) 1.411* (0.815)	(1.941) 1.693 (1.120)	(1.878) 0.764 (1.289)	(0.822) 0.454 (0.487)	(0.807) 0.333 (0.509)	(0.040) 0.063***	(0.042) 0.027
Contemporary controls:	(0.793)	(0.815)	(1.129)	(1.362)	(0.487)	(0.502)	(0.023)	(0.026)
In income in 2000	-34.612***	-32.685^{***}	10.766	6.385	-6.530	-6.616	-0.776^{***}	-0.815^{***}
ln income in 2000 squared	2.038***	1.936***	-0.707	(10.482) -0.523 (0.706)	0.539**	0.535*	0.051***	0.051***
Continent fixed effects	(0.400)	(0.451)	(0.000)	(0.700)	(0.271)	(0.201)	(0.015)	(0.013)
Observations	165	165	123	123	144	144	144	144
Adjusted R-squared	0.37	0.36	0.11	0.13	0.27	0.27	0.26	0.30
R-squared	0.40	0.41	0.16	0.22	0.31	0.34	0.28	0.33

COUNTRY-LEVEL OLS ESTIMATES WITH HISTORICAL AND CONTEMPORARY CONTROLS

 Omitted variables: historically richer countries could have adopted (and historically richer countries have better gender attitudes today).

Reverse causality: societies with bad gender norms could have adopted the plough (and gender norms are persistent over time).

 Omitted variables: historically richer countries could have adopted (and historically richer countries have better gender attitudes today).

Reverse causality: societies with bad gender norms could have adopted the plough (and gender norms are persistent over time).

Plough-Positive and Plough-Negative Crops

Pryor Comparative Studies in Society and History 1985

- Plough-positive: teff, wheat, barley, rye, wet rice.
- Plough-negative: maize, sorghum, millet, tubers.

Plough-Positive and Plough-Negative Crops

Pryor Comparative Studies in Society and History 1985

- Plough-positive: teff, wheat, barley, rye, wet rice.
- Plough-negative: maize, sorghum, millet, tubers.
- Strategy: Use geo-climatic suitability for plough-(+) and plough-(-) crops as instruments for plough adoption. FAO Global Agro-Ecological Zones 2002 database.

Plough-Positive and Plough-Negative Crops

Pryor Comparative Studies in Society and History 1985

- Plough-positive: teff, wheat, barley, rye, wet rice.
- Plough-negative: maize, sorghum, millet, tubers.
- Strategy: Use geo-climatic suitability for plough-(+) and plough-(-) crops as instruments for plough adoption. FAO Global Agro-Ecological Zones 2002 database.
- Specifically, assess suitability for the plough- ⊕ cereals wheat, barley, and rye, and for the plough- ⊙ cereals foxtail millet, pearl millet and sorghum.
- Two sets have similar uses and so only differ in plough suitability.

	Cou	NTRY-LEVEL 25	SLS AND REDU	CED-FORM EST	TIMATES						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
	Р	anel A. First	stage 2SLS es	stimates. Dep	endent variab	le: Traditiona	d plough use				
Mean of dep. var.	0.53		0.44	ł	0.5	4	0.8	51			
Plough-positive environment	0.744*** (0.084)	0.629*** (0.089)	0.861*** (0.078)	0.673*** (0.103)	0.820*** (0.082)	0.685*** (0.104)	0.874*** (0.089)	0.717*** (0.118)			
Plough-negative environment	0.119 (0.122)	0.185 (0.133)	0.100 (0.166)	0.115 (0.171)	0.132 (0.130)	0.187 (0.141)	0.129 (0.181)	0.142 (0.188)			
Equality of coefficients (p-value) F-stat (plough variables)	0.00 40.21	0.00 25.06	0.00 66.80	0.00 21.88	0.00 51.96	0.00 21.88	$0.00 \\ 49.54$	0.00 18.52			
	Dependent variable (panels B & C):										
	Female l participat	abor force ion in 2000	Share of female 200	firms with ownership, 5–2011	Share of position women	of political as held by a in 2000	Average effect size (AES)				
Mean of dep. var.	51	.10	3	5.04	1	1.86	2.	.31			
	Panel B. Reduced-form estimates										
Plough-positive environment	-10.644^{***} (3.816)	-11.299*** (4.285)	-13.164^{**} (5.610)	-12.692^{**} (6.214)	-5.800^{**} (2.534)	-6.840** (2.790)	-0.639^{***} (0.214)	-0.774*** (0.288)			
Plough-negative environment	18.928^{***} (6.506)	19.571^{***} (6.329)	6.072 (9.926)	$9.134 \\ (10.401)$	-2.975 (6.093)	-2.868 (6.258)	0.607 (0.391)	0.653* (0.393)			
Equality of coefficients (p-value) F-stat (plough variables)	$0.00 \\ 14.87$	$0.00 \\ 12.49$	$0.02 \\ 5.41$	$0.02 \\ 4.46$	$0.56 \\ 3.44$	$0.47 \\ 3.40$	0.00 9.19	0.00 7.11			
			Panel	C. Second-sta	ige 2SLS estir	nates					
Traditional plough use	-21.630^{***} (5.252)	-25.013^{***} (7.513)	-17.486^{***} (5.533)	-22.689^{***} (7.620)	* -6.460*** (2.334)	-9.726^{***} (3.750)	-0.918^{***} (0.225)	-1.313^{***} (0.388)			
Hausman test (p-value) Hansen J	$0.02 \\ 0.00$	0.04 0.00	$0.56 \\ 0.41$	$0.40 \\ 0.31$	$0.22 \\ 0.72$	0.10 0.86	0.33 0.05	$\begin{array}{c} 0.16 \\ 0.06 \end{array}$			
Historical & contemporary controls Continent FEs Observations	yes no 160	yes 160	yes no 122	yes yes 122	yes no 140	yes yes 140	yes no 104	yes yes 104			

Discussion

- OLS estimates were pretty large:
- 1 SD \uparrow (0.472) in plough use \Rightarrow

FLFP \downarrow 5.85 percentage points (11.4% of its sample mean);

Female Ownership \downarrow 7.19 percentage points (20% of its sample mean);

Women in politics \downarrow 2.28 percentage points (19% of its sample mean);

Discussion

- OLS estimates were pretty large:
- 1 SD \uparrow (0.472) in plough use \Rightarrow

FLFP \downarrow 5.85 percentage points (11.4% of its sample mean);

Female Ownership \downarrow 7.19 percentage points (20% of its sample mean);

Women in politics \downarrow 2.28 percentage points (19% of its sample mean);

IV coefficients even larger than OLS:

- Endogeneity of plough adoption by historically advanced societies.
- Could have better gender norms today, biasing OLS estimates downward.

Pathways

- Pathways: attitudes or institutions?
- Attitudes = beliefs, cultural norms about role of women
- Institutions = legal systems and policies that inhibit female participation.
- Authors run OLS for attitudes (WVS) that suggest former, not latter.

Pathways

- Pathways: attitudes or institutions?
- Attitudes = beliefs, cultural norms about role of women
- Institutions = legal systems and policies that inhibit female participation.
- Authors run OLS for attitudes (WVS) that suggest former, not latter.
- More starkly, they examine children of immigrants in US and Europe:
- Not random, but controls very well for institutions.
- Estimating equation:

$$y_{i,s,c} = \alpha_s + \beta \mathsf{Plough}_c + \mathbf{X}_c^{\mathbf{H}} \mathbf{\Gamma} + \mathbf{X}_c^{\mathbf{C}} \mathbf{\Pi} + \mathbf{X}_i \mathbf{\Phi} + \varepsilon_{i,s,c}$$

where i = daughter of immigrant parent living in state s with ancestral origin c (mother or father), $y_{i,s,c} =$ 0-1 participation in labor market, X_i is individual control (age, marital, education, rural-urban, husband characteristics if married.)

	(1)	(2) De	(3) pendent vari	(4) able: Labor	(5) force particip	(6) ation indica	(7) tor, 1994–20	(8) 11	(9)		
		All women		Married women							
	Wo	man's ances	stry	W	oman's ances	try	Husband's ancestry				
	Father's country	Mother's country	Parents same country	Father's country	Mother's country	Parents same country	Father's country	Mother's country	Parents same country		
Mean of dep. var.	0.63	0.63	0.60	0.68	0.69	0.69	0.70	0.71	0.70		
Traditional plough use	-0.044^{***} (0.015)	-0.043^{**} (0.018)	-0.062^{***} (0.020)	-0.094^{**} (0.046)	-0.118^{***} (0.043)	$\begin{array}{c} -0.136^{**} \\ (0.054) \end{array}$	-0.065^{***} (0.024)	-0.045^{**} (0.022)	-0.058^{**} (0.024)		
Observations Adjusted R-squared R-squared	57,138 0.23 0.23	55,341 0.23 0.23	32,776 0.25 0.26	$10,206 \\ 0.10 \\ 0.11$	9,508 0.10 0.11		35,393 0.08 0.09	$35,158 \\ 0.08 \\ 0.08$	$23,124 \\ 0.08 \\ 0.09$		

DETERMINANTS OF FEMALE LABOR FORCE PARTICIPATION FOR US CHILDREN OF IMMIGRANTS

Early history and early technology affect modern development.

- Problem: Endogeneity of explanatory variables precludes identification.
- Omitted variables, reverse causation and measurement error

Summary

Early history and early technology affect modern development.

- Problem: Endogeneity of explanatory variables precludes identification.
- Omitted variables, reverse causation and measurement error
- Two Studies of Long Shadows:
- Origins of property rights
- Early technologies

Summary

Early history and early technology affect modern development.

- Problem: Endogeneity of explanatory variables precludes identification.
- Omitted variables, reverse causation and measurement error
- Two Studies of Long Shadows:
- Origins of property rights
- Early technologies

General strategy: Use of instrumental variables

Comment: the identification-creativity frontier.