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Testing for the Long Shadow of Institutions

Institutions are endogenous to development.

So how to establish causality?

Problems of endogeneity:

Reverse causality: richer countries can afford better institutions

Omitted variables: Some other factor moves both outcomes

Measurement error: Independent variable measured with noise

Perceptions: perceiving better institutions in richer countries
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A Detour: Instrumental Variables

Example 1: Schooling and Earnings (Angrist and Kreuger 1991)

Imagine we want the effect of schooling on wages, and regress

yi = C + b1si + ϵi

yi is earnings (say log wages) and si is years of schooling.

Problem: Omitted variable we do not measure: “ability.”

The “true” regression is

yi = C + b1si + b2ai + ϵi

but we can’t run this regression because we don’t see ai!
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Example 2: Poverty and Conflict (Miguel, Satyanath and Sergenti 2004)

We want to know if low incomes cause conflict, and regress

ci = A+ byi + ϵi

where ci is conflict incidence and yi is per-capita income.

Problem: Reverse causality. Conflict can affect income.

Example 3: Noisy data from the past

We think we’re running yi = A+ bxi + ϵi, but we’re really running is

yi = A+ b[xi +mi] + ϵ′i, where ϵ′i = ϵi − bmi.

Problem: Measurement error mi when measuring xi.

Common Theme: xi correlated with error term ϵi ; biases b.
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Summary of the Problem

Regression coefficient given by

b̂ =
SampleCov(x, y)

SampleVar(x)
=

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2

At the same time,

yi − ȳ = [A+ bxi + ϵi]− [A+ bx̄+ ϵ̄] = b[xi − x̄] + [ϵi − ϵ̄].

Combining,

b̂ = b

∑
i(xi − x̄)2∑
i(xi − x̄)2

+

∑
i(xi − x̄)(ϵi − ϵ̄)∑

i(xi − x̄)2

If ϵ is uncorrelated with x, then E(b̂|x1, . . . , xn) = b.

But if ϵ is correlated with x, then E(b̂|x1, . . . , xn) ̸= b.

More importantly, the problem persists in large samples.
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i(xi − x̄)2

At the same time,
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Instruments

A magic variable z that satisfies two conditions:

(i) z is correlated with the endogenous variable x.

You can run a separate regression (the “first stage”) to show this is

statistically true.

(ii) z is uncorrelated (except via x) with the dependent variable y.

That is, z is uncorrelated with the error term ϵ: exclusion restriction.

You are not allowed to show this statistically. You have make the

argument by appealing to “theory.”
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Application: Birthdays and Schooling

Angrist and Krueger 1991, 2001

In the US, you start school in the year you turn 6.

Someone born in December 2000 can go to school a year earlier than

someone born in January 2001.

So those born in a later calendar quarter start school early.

On average, this gives late-quarter individuals more years of schooling.

Angrist-Krueger study men born from 1930 to 1959 (1980 US census).

Is quarter of birth usable as an instrument for education?
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Birthdays and Schooling

Mean years of completed education, by quarter of birth:



Birthdays and Schooling

Mean log weekly earnings, by quarter of birth:



From Angrist and Krueger 2001:

“Differences in earnings by quarter of birth are assumed to be accounted for

solely by differences in schooling by quarter of birth, so that the estimated return

to schooling is simply the appropriately rescaled difference in average earnings

by quarter of birth. Only a small part of the variability in schooling — the part

associated with quarter of birth — is used to identify the return to education.”

Other possible instruments in this context:

School availability (Duflo 1998 Indonesia, Bedi-Gaston 1999 Honduras)

Distance to the nearest high school (Maluccio 1997 Philippines)

Change in compulsory schooling age (Harmon and Walker 1995 UK)

Do you think these are good instruments? Why or why not?
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IV Procedure: Two-Stage Least Squares (2SLS)

First Stage: regress x on the instrument(s) z.

Make sure to include any controls to be used in predicting y.

Second Stage: run the regression you originally wanted, except . . .

. . . use the predicted or fitted values x̂ from the First Stage.

In effect: make use of the variation of x that comes from the instruments,

using all available right-hand-side variables. That collapses everything neatly

into a single object x̂, which is used in the second stage.
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Single Instrument for Single Variable, No Controls

IV estimator given by

b̂IV =
SampleCov(z, y)

SampleCov(z, x)
=

∑
i(zi − z̄)(yi − ȳ)∑
i(zi − z̄)(xi − x̄)

,

where z is the instrument for x.

As before,

yi − ȳ = [A+ bxi + ϵi]− [A+ bx̄+ ϵ̄] = b[xi − x̄] + [ϵi − ϵ̄].

Combining,

b̂IV = b

∑
i(zi − z̄)(xi − x̄)∑
i(zi − z̄)(xi − x̄)

+

∑
i(zi − z̄)(ϵi − ϵ̄)∑
i(zi − z̄)(xi − x̄)

= b+

∑
i(zi − z̄)(ϵi − ϵ̄)∑
i(zi − z̄)(xi − x̄)

⇒ E(b̂IV|x, z) = b+ E
( ∑

i(zi−z̄)(ϵi−ϵ̄)∑
i(zi−z̄)(xi−x̄) |x, z

)
.

Could still be biased for small samples because x and ϵ are correlated, but . . .

For large samples, b̂IV ≃ b, because sample covariances are consistent.
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