Development Economics

Slides 5

Debraj Ray, NYU

Convergence

- A central prediction of the Solow growth model: unconditional convergence:
- The incomes of countries move ever closer to one another
- Based on the deep legacy of diminishing returns ...
- ... and the equality of s, n, π across countries
- Does this sound trivial to you, or totally wild?
- pro-trivial vs pro-wild
- In a sense, the theme of convergence (or its negation) pervades this entire course.

Act 1: Convergence? 1870–1979

- Baumol (AER 1986) studied 16 countries:
- among the richest in the world today.
- In order of poorest to richest in 1870: Japan, Finland, Sweden, Norway, Germany, Italy, Austria, France, Canada, Denmark, USA, Netherlands, Switzerland, Belgium, UK, and Australia.
- Why just 16?
- The Maddison project (Angus Maddison 1982, 1991, 2007)
- As of 2020: 169 countries up to 2018, with over 60 going back to 1870.
- But not when Baumol wrote this paper.

Act 1: Convergence? 1870–1979

Idea: regress 1870–1979 growth rate on 1870 incomes.

$$\ln y_i^{1979} - \ln y_i^{1870} = A + b \ln y_i^{1870} + \epsilon_i$$

Unconditional convergence $\Rightarrow b \simeq -1$. Get b = -0.995, $R^2 = 0.88$.

Act 1: Convergence? 1870–1979 De Long critique (AER 1988): Add seven more countries to Maddison's 16. In 1870, they had as much claim to membership in the "convergence club" as any included in the 16: Argentina, Chile, East Germany, Ireland, New Zealand, Portugal, and Spain. New Zealand, Argentina, and Chile were in the top-10 list for British and French overseas investment (in per capita terms) as late as 1913. All had per capita GDP higher than Finland in 1870. Strategy: drop Japan (why?), add the 7. Act 1: Convergence? 1870–1979 log per-capita income growth, 1870-1979 SWE SWE WGER CAN USA **€** CHE NBEL O CHL O PRT GBR O ARG AUS 1.0 6.0 6.4 6.8 7.2 7.6 log per-capita income, 1870 (1975\$) Slope still negative, though loses significance.

Correct for measurement error, game over.

Act 1: Convergence? 1870–1979

- Lant Pritchett (1997) called it "divergence, big time."
- **Assumption:** no country can fall below \$250 per capita (1985 PPP dollars)
- Defense 1: lowest 5-year average ever is Ethiopia \$275 (1961-5).
- Defense 2: \$250 per capita is below extreme nutrition-based poverty lines actually used in poor countries (say, pegged at 2000Kcal, see Ravallion, Dutt and van de Valle 1991).
- Defense 3: at any lower income, population too unhealthy to grow. Child mortality rate estimated to climb well above barrier of 600 per 1000.

Act 1: Convergence? 1870–1979

- Claim: the \$250 bound "proves" divergence over long-run.
- The US grew @1.7% p.a., so by 4 times from 1870 to 1960.
- Thus, any country whose income was not fourfold higher in 1960 than it was in
 1870 grew more slowly than the United States.
- 42 out of 125 countries in the PWT have pcy below \$1,000 in 1960.
- Or try this:
- extrapolate back so poorest country in 1960 hits exactly \$250 in 1870.
- US: use actual figures.
- preserve the relative rankings of all other countries (see his footnote 11)

Act 1: Convergence? 1870–1979

	1870	1960	1990
USA (<i>P</i> \$)	2063	9895	18054
Poorest (P\$)	250	257	399
(assumption	(assumption)	(Ethiopia)	(Chad)
Ratio of GDP per capita of richest to poorest country	8.7	38.5	45.2
Average of seventeen "advanced capitalist" countries from Maddison (1995)	1757	6689	14845
Average LDCs from PWT5.6 for 1960, 1990 (imputed for 1870)	740	1579	3296
Average "advanced capitalist" to average of all other countries	2.4	4.2	4.5
Standard deviation of natural log of per capita incomes	.51	.88	1.06
Standard deviation of per capita incomes	P\$459	P\$2,112	P\$3,988
Average absolute income deficit from the leader	P\$1286	P\$7650	P\$12,662

Act 1: Convergence? 1870–1979

Conditional Convergence

- Unconditional convergence assumes all parameters are the same.
- Way too strong
- **Conditional convergence:**
- Control for parameters such as s and n
- Or any parameter that systematically varies across countries
- **Calibration**:
- recall our steady state equation

$$\frac{f(\hat{k}^*)}{\hat{k}^*} \simeq \frac{n+\delta+\pi}{s},$$

and then move to the Cobb-Douglas production function.

Calibration

Been there, done that, but let's review:

$$Y = AK^a (eL)^{1-a}$$

- where $e(t) = (1 + \pi)^t$.
- In effective labor units:

$$\hat{y} = \frac{Y}{eL} = \frac{AK^a(eL)^{1-a}}{eL} = A\left(\frac{K}{eL}\right)^a = A\hat{k}^a (=f(\hat{k})).$$

Combine with steady state equation:

$$\frac{n+\delta+\pi}{s} \simeq \frac{f(\hat{k}^*)}{\hat{k}^*} = A\hat{k}^{*a-1}$$

 \Rightarrow

$$\hat{k}^* = \left(\frac{sA}{n+\delta+\pi}\right)^{1/(1-a)} \text{ and } \hat{y}^* = A\left(\frac{sA}{n+\delta+\pi}\right)^{a/(1-a)}$$

Calibration

$$\hat{y}^* = A\left(\frac{sA}{n+\delta+\pi}\right)^{a/(1-a)} = A^{1/(1-a)}\left(\frac{s}{n+\delta+\pi}\right)^{a/(1-a)}$$

It follows that if two countries have similar π , n and δ ,

$$\frac{y_1}{y_2} = \left(\frac{A_1}{A_2}\right)^{1/1-a} \left(\frac{s_1}{s_2}\right)^{a/1-a}.$$

- *a* is share of capital (why?).
- 0.25 (Parente-Prescott) 0.40 (Lucas), so $a/(1-a) \leq 2/3$.
- Doubling $s \Rightarrow$ income ratio approx $2^{2/3}$, around 60%.
- 1990–2020, average per capita income (PPP) of richest 10% about 30+ times corresponding figure for the poorest 10%.

Calibration

Technology differentials give us a better chance; recall:

$$\frac{y_1}{y_2} = \left(\frac{A_1}{A_2}\right)^{1/1-a} \left(\frac{s_1}{s_2}\right)^{a/1-a}.$$

That is, *A*-differences are more amplified than *s*-differences:

$$\frac{y_1}{y_2} = \left(\frac{A_1}{A_2}\right)^{1/(1-a)}$$

- Work out an example when a=1/3. $\sqrt{2}$ versus 3/2.
- Better, but still not close.
- Variation in incomes just too high relative to the basic theory.

Regression Approach

Deeper dive Mankiw, Romer and Weil (QJE 1992). Steady state again:

$$\hat{y}^* = A^{1/(1-a)} \left(\frac{s}{n+\delta+\pi}\right)^{a/(1-a)}$$

so that

$$y(t) = A^{1/(1-a)} (1+\pi)^t \left(\frac{s}{n+\delta+\pi}\right)^{a/(1-a)}$$

• Take logarithms:

$$\ln y(t) = \left[\frac{1}{1-a}\ln A + t\ln(1+\pi)\right] + \frac{a}{1-a}\ln s - \frac{a}{1-a}\ln(n+\delta+\pi).$$

Regression Approach

$$\ln y(t) = \left[\frac{1}{1-a}\ln A + t(1+\pi)\right] + \frac{a}{1-a}\ln s - \frac{a}{1-a}\ln(n+\delta+\pi).$$

Motivates the regression that we need to run:

 $\ln y_i(t) = [C + Dt] + b_1 \ln s_i + b_2 \ln(n + \delta + \pi)_i + \epsilon_i.$

- And also pins down what we should expect to find:
- $b_1 > 0$, $b_2 < 0$, and $b_1 = -b_2 = a/(1-a) \simeq 0.6$.
- **Implementation:** take $\delta + \pi = 0.05$ (exact numbers don't matter much).
- Regress y^{1985} on parameter averages over 1960–1985.
- Get $b_1 = 1.42$ and $b_2 = -1.97$. Signs ok, but way too big!

• No technical progress for simplicity. Just divide by U; then $(1+n)k(t+1) = (1-\delta_k)k(t) + s_ky(t),$ $(1+n)h(t+1) = (1-\delta_h)h(t) + s_hy(t),$ • In steady state $k(t) = k(t+1) = k^*$, $h(t) = h(t+1) = h^*$, $y(t) = y^*$: $k^* = \frac{s_k y^*}{n+\delta_k}$ $h^* = \frac{s_h y^*}{n+\delta_h}$

• Recall $y = Ak^a h^c$; combining:

$$y^* = Ak^{*a}h^{*c} = A\left(\frac{s_k y^*}{n+\delta_k}\right)^a \left(\frac{s_h y^*}{n+\delta_h}\right)^c, \text{ or}$$
$$y^* = A^{1/(1-a-c)} \left(\frac{s_k}{n+\delta_k}\right)^{a/(1-a-c)} \left(\frac{s_h}{n+\delta_h}\right)^{c/(1-a-c)}$$

Take logarithms:

$$\ln y^* = \frac{\ln A}{1 - a - c} + \frac{a \ln s_k}{1 - a - c} + \frac{c \ln s_h}{1 - a - c} - \frac{a \ln(n + \delta_k)}{1 - a - c} - \frac{c \ln(n + \delta_h)}{1 - a - c}.$$

As before, motivates the regression we need to run:

 $\ln y_i = C + b_1 \ln s_{ki} + b_2 \ln s_{hi} + b_3 \ln(n + \delta_k)_i + b_4 \ln(n + \delta_h)_i + \epsilon_i.$

- Predictions: $b_1 = \frac{a}{1-a-c}$, $b_2 = \frac{c}{1-a-c}$, and coefficient on $\ln n$ is $b_3 + b_4 = -\frac{a+c}{1-a-c}$.
- Now income differences higher than that predicted by *a* alone.
- The coefficients on sk and n will be larger than before.

• If
$$a = c = 1/3$$
, $b_1 = b_2 = 1$, and $b_3 + b_4 = -2$.

Dependent variable: log GDP per working-age person in 1985				
Sample:	Non-oil	Intermediate	OECD	
Observations:	98	75	22	
CONSTANT	6.89	7.81	8.63	
	(1.17)	(1.19)	(2.19)	
$\ln(I/GDP)$ (i.e., $\ln s_k$)	0.69	0.70	0.28	
	(0.13)	(0.15)	(0.39)	
$\ln(n + g + \delta)$	-1.73	-1.50	-1.07	
	(0.41)	(0.40)	(0.75)	
$ln(SCHOOL)$ (i.e., $ln s_h$)	0.66	0.73	0.76	
	(0.07)	(0.10)	(0.29)	
\overline{R}^2	0.78	0.77	0.24	

TABLE II ESTIMATION OF THE AUGMENTED SOLOW MODEL

Source: Mankiw, Romer and Weil (1992).

- These are hopeful signs, but it is way too early to be sure:
- The above parameters are only the basic Solow parameters
- Institutions move far more slowly
- We've had divergence for far too long. 20 years does not fully reverse that.

