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Answers to Problem Set 8

(1) A farming family owns land of size a (acres), and farms it with labor ℓ, using the
production function

Y = 100ℓ1/2a1/2.

The farm has access to 4 total units of labor (you can think of 4 as the family size), which
it divides as finely as it wishes (fractionally if needed) between working on the farm and off
the farm. Off-farm employment yields a wage of 100 per unit.

The farm can also hire in labor, again at the wage cost of 100 per unit. But unlike family
labor, hired labor has to be supervised, and for this the farm has to hire a supervisor at a
cost of 225. Once paid, the supervisor can costlessly supervise all hired labor.

(a) Prove that if the family has less than 16 acres of land (a ≤ 16), it will devote family labor
equal to a/4 to the farm, hire in no additional labor, and hire out the remainder 4 − (a/4)
for off-farm employment.

The marginal product of family labor on the land of size a is given by

∂Y

∂ℓ
= 50ℓ−1/2a1/2 = 50

√
a/ℓ.

That means if all the family labor of 4 is assigned to the family land, the marginal product is
50
√
a/4, which is lower than 100 as long as the land holdings are less than 16. So that proves

that there is no point hiring in any labor, which costs 100 (plus supervision). In fact, if land
size a < 16, the marginal product of family labor falls strictly below 100, which means that
family income can be improved by cutting back on family labor assigned to family land, until
the marginal product is just 100, and then hiring out rest of the family labor on off-farm
employment.

(b) Prove that if the family has between 16 and 49 acres of land, it will continue to operate
as a full family farm, with all its family members working full time on it, but will not hire in
any labor. Above 49 acres, it hires a supervisor and at this threshold, its hiring of outside
labor jumps up from 0 to slightly over 8 units of hired labor, and then keeps climbing as a
continues to rise.

Suppose that the fam has a > 16 acres of land. Option 1 is to continue to use only family
labor. In that case the total income Y1 is given by

Y1 = 100ℓ1/2a1/2 = 100× 41/2 × a1/2 = 200a1/2.
1
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(You can subtract off the imputed cost of family labor but it won’t make any difference to
the argument.) Option 2 is to bring in hired labor, which means hiring a supervisor at 225.
Then the net income Y2 to the family after paying for hired labor and supervision is

Y2 = 100ℓ1/2a1/2 − 100(ℓ− 4)− 225

with ℓ chosen optimally to maximize this expression. The optimal choice of ℓ is given by the
first order condition “marginal product equals marginal cost,” or

50
√
a/ℓ︸ ︷︷ ︸

Marginal Product

= 100︸︷︷︸
Marginal Cost

.

which solves out to ℓ = a/4 (some of this is family labor and the rest is hired). So we have,
using this formula,

Y2 = 100(a/4)1/2a1/2 − 100((a/4)− 4)− 225 = 25a+ 175.

You can check that Y1 > Y2 for a < 49, and the inequality flips when a > 49.

Now suppose that the family has the additional option of leasing out some or all of its land
at a fixed rental rate of R per unit. But assume that it cannot lease in any land.

(c) Calculate a threshold for R such that above this threshold, the family never farms any
land, no matter how much or how little land it owns, and leases it all out. [Hint: work out
the implicit return to land on the family farm after subtracting the imputed costs of family
labor.]

Calculate the implicit return per acre to having land when all labor is valued at 100 — family
or hired. Never mind the supervisor. It is given by

r ≡ (Y − 100ℓ)/a = (100ℓ1/2a1/2 − 100ℓ)/a,

where again ℓ is chosen optimally as before, and so equals a/4. Using this information, we
have

r = [100(a/4)1/2a1/2 − 100(a/4)]/a = 25.

It follows that if the rental rate on land exceeds 25, it is never worth it for this family to farm
its own land. It is better off leasing that land out.

(d) Can you work out what would happen for lower values of the land rental? For instance,
can you show values of R such that for small values of land, the family leases out nothing,
then leases out some land, and then again goes back to leasing out no land as its holdings
get large?

If the rental rate is smaller than 25, then there is absolutely no point in leasing out the land
as long as a < 16. The reason is that the return per acre is precisely 25 in that case. But
after that the return per acre starts to fall. For instance in the zone where 16 < a < 49, the
marginal product of land steadily drops as more and more land is applied to a fixed amount
of family labor. The marginal product of land there is given by

50(ℓ/a)1/2 = 100/
√
a

which drops from 25 when a = 16 all the way down to 100/7 ≃ 14.3 when a = 49. If the
outside rental rate is still smaller than this threshold, then land will never be rented out.
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But if it is larger, say at R0 (but still less than 25 of course), then some of the land will be
rented out until the marginal product of the remaining farmed land rises back up to R0.

Now, once the farm has enormous amounts of land and hires in labor, then the cost of the
supervisor becomes tiny in comparison to overall net income. The implied return to land per
acre almost becomes 25 again. So for any R0 < 25, there is a threshold size of land large
enough after which the supervisor will be hired and no land will be leased out.

(e) How would your answers to parts (b)-(d) change (if at all) if there were no fixed costs to
supervision, and if hired labor costs 25 per unit to supervise instead?

If labor costs 25 per unit to supervise, this is just the same as saying that the cost of hiring
in labor is 125 per worker. So back we go to the drawing board. Labor will be hired only
when land is abundant enough so that the marginal product of labor rises above 125. The
marginal product of labor is given by

50
√

a/ℓ = 25
√
a,

as long as no labor is hired in. At a = 16, this is precisely 100, and continues to climb as a
goes up. It is only when a reaches 25 acres, that this marginal product hits 125. After this
point, labor will be hired in. The total amount of labor will then be given by

50
√
a/ℓ = 125,

or ℓ = 4a/25. At a = 25, this is precisely 4, so that no fresh labor is hired in, and for all
larger a the amount of hired labor will be given by (4a/25)− 4. Contrast this with part (b),
where no labor is hired until a hits 49. However, you can check that at this value, there is a
bigger jump in the amount of hired labor than in the current case. (Think about why.)

What about leasing out land to rent? Well, once labor starts getting hired at 125, the
marginal return to owned land per acre is given by

50(ℓ/a)1/2 = 50(4/25)1/2 = 20.

So this means that as long as R is between 20 and 25, the land will be leased out rather than
hire in labor, once the marginal product of land drops from 25 to R (which will happen at
some acreage between 16 and 25). If R < 20, however, land will never be leased out.

(2) Kumar, a small farmer, has his own plot of land (call it A) and leases another plot
(call it B) from a large landowner, Malini. These are separate plots and he must farm them
separately by allocating his endowment of one unit of effort to the two plots, in the form of
eA and eB. There is no cost of effort — the opportunity cost on one plot is just the cost of
not using his effort on the other plot. The production functions on the two plots are

YA = A
√
eA and YB = B

√
eB,

so that total output is YA + YB, and of course, eA + eB = 1.

Kumar’s utility is strictly concave in his own income — he is risk averse. If Kumar earns x,
his utility is given by log(x).
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(a) In the hypothetical case in which Kumar owns both plots of land, show that his effort
allocation is given by

eA =
A2

A2 +B2
and eB =

B2

A2 +B2
,

with total output equal to
√
A2 +B2.

Kumar must allocate labor across the two plots to maximize

A
√
eA +B

√
eB,

subject to the constraint that eA + eB = 1. Clearly, he should equate marginal products
across the two plots, otherwise he can always gain by transferring a bit of effort from one
plot to the other. So the first order condition is given by

(A/2)e
−1/2
A = (B/2)e

−1/2
B ,

which means that eA/eB = A2/B2. Using this in the constraint eA + eB = 1, we must
conclude that

A2

B2
eB + eB = 1, or

[
eB =

B2

A2 +B2
and eA =

A2

A2 +B2

]
.

Substituting these solutions into the production functions for the two plots, we see that

Total Output = A
√
eA +B

√
eB =

A2 +B2

√
A2 +B2

=
√
A2 +B2.

Assume that if Kumar does not rent Malini’s plot, he simply farms his own plot.

(b) With part (a) in mind, show that Malini can extract a total of
√
A2 +B2 − A in rent,

and demonstrate how she can do that using a fixed rent contract.

If Kumar farms only his own plot with his effort, his return is given by YA = A
√
eA = A

√
1 =

A. So the maximum that Malini can extract from Kumar is√
A2 +B2 −A.

Malini can do this by asking for a fixed rent R equal to the above amount. Now we are
effectively in the world of part (a). Kumar is paying a “lump sum tax” of R to Malini and
so will make exactly the same decisions as in part (a), and after paying his rent, will be left
with precisely A.

(c) Suppose that output is uncertain (we won’t formally model this here, though see question
3) and that Malini can only take a share σ of YB as rent. Find an expression for the rent
that Malini can get out of Kumar, expressed as a function of σ and the other exogenous
parameters A and B of the model. (You will need to solve out for Kumar’s effort level on
the plot for each σ, the answer will be similar to that in part (a).)

If Malini asks for a share σ of the output on the rented plot, then Kumar will choose his
effort allocation to maximize

A
√
eA + (1− σ)B

√
eB.



5

This is exactly the same problem as in part (a) where all we do is replace B by a new constant
(1− σ)B. So it must be that Kumar now chooses

eB =
(1− σ)2B2

A2 + (1− σ)2B2
.

That means that total output on the rented plot is

YB = B
√
eB = B

√
(1− σ)2B2

A2 + (1− σ)2B2
=

(1− σ)B2√
A2 + (1− σ)2B2

,

and consequently Malini’s total rent is

σYB =
σ(1− σ)B2√

A2 + (1− σ)2B2
.

(d) Without doing any further calculations, try and use your intuition to argue why Malini’s
rent must now be lower compared to what she gets in part (b).

Well, Kumar must still be given at least A. In fact you can show that he gets strictly more
than A under the sharecropping problem. You can prove this by simply looking at Kumar’s
maximization problem under sharecropping — he had the option to set eA = 1 and pick
up an income of A, but he chose to put in some effort on B as well, so his income must
strictly exceed A. Moreover, the total output is now distorted: we know from parts (a)
and (b) that it is maximized at the value generated by the fixed rent problem; at the value√
A2 +B2. Therefore under sharecropping, total output is lower than this maximum, and

Kumar’s income is higher than A, so Malini must get a lower rent than under fixed rent.

(3) Problem 2 might leave us wondering why on earth Malini would choose to sharecrop if
fixed rent is better. We kind of waved our hands and said that otherwise the situation is
too risky for Kumar. We are now going to try and formalize this argument in a very simple
setting. In the previous problem, let us say that that when Kumar farms the land, A = B = 1
with probability 1/2, or A = B = λ > 1 with probability 1/2. (Good and bad outcomes are
perfectly correlated across the two plots.) In other words,

Y +
A = λ

√
eA and Y +

B = λ
√
eB,

with probability 1/2, while

Y −
A =

√
eA and Y −

B =
√
eB,

again with probability 1/2, where I have used the signs “+” and “-” to distinguish good and
bad outputs. Kumar’s next-best alternative (if he does not rent) is just to farm his own plot.
And total labor endowment equals 1, as before, and supplied at zero cost.

(a) Show that if Kumar only has his own land (plot A) and does not rent (plot B), his
expected utility is given by (1/2) log(λ).

If Kumar has only his own plot, he puts in effort 1 into it, so that output is now 1 with
probability 1/2, and λ with probability 1/2. It follows that Kumar’s expected utility is given
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by

(1)
1

2
log(1) +

1

2
log(λ) =

1

2
log(λ),

where we use the well known fact that log(1) = 0.

(b) Show that if Kumar rents Plot B on fixed rent tenancy with rent R, then he will put
equal effort on both plots, with eA = eB = 1/2, so that his expected utility is given by

1

2
log(

√
2−R) +

1

2
log(λ

√
2−R)

If Kumar rents plot B on fixed rent R, and chooses an allocation (eA, eB) of effort, his
expected utility is given by

1

2
log

(√
eA +

√
B −R

)
+

1

2
log

(
λ[
√
eA +

√
B]−R

)
.

To maximize this, it is clearly necessary to maximize
√
eA +

√
B. Again using the idea

that marginal products have to be equated across the two plots, we must conclude that
eA = eB = 1/2. Therefore Kumar’s expected utility is given by

(2)
1

2
log

(
2
√
1/2−R

)
+

1

2
log

(
2λ

√
1/2−R

)
=

1

2
log

(√
2−R

)
+

1

2
log

(
λ
√
2−R

)
,

as claimed in the question.

(c) Using the answers to parts (a) and (b), write down an equation that describes how Malini
would pick down the maximum rent that she can extract from fixed rent tenancy. You don’t
need to explicitly solve this equation (you can try it, though, it’s not hard), but prove that R
cannot exceed

√
2. You will have to use some standard properties of logarithmic functions.

Malini can choose R to bring down Kumar’s expected payoff, as given in equation (2), down
to Kumar’s outside option utility, which is given by equation (1). Therefore R should be
chosen to solve the equation:

(3)
1

2
log

(√
2−R

)
+

1

2
log

(
λ
√
2−R

)
=

1

2
log(λ).

You can easily solve equation (3) by noting that it is equivalent to solving the equation(√
2−R

)(
λ
√
2−R

)
= λ

with each term in the product on the left restricted to be positive,1 and solving out the
resulting quadratic equation. Note that R cannot become as high as

√
2, for then one of the

terms in the product on the left approaches 0, so that the equation cannot hold.

(d) Now suppose that Malini offers a sharecropping contract with share σ to herself and 1−σ
to Kumar. Using a similar logic to that in the previous question, show that

eB =
(1− σ)2

1 + (1− σ)2
.

1If you are algebraically-minded, you will see that there is a second mathematical solution in which R >
λ
√
2, but this has no economic meaning, as Kumar would be paying out more than his output in both states.
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so that the expected rent that Malini receives is given by

Sharecropping rent =
1 + λ

2

σ(1− σ)√
1 + (1− σ)2

.

If Malini offers a sharecropping contract with σ to herself and 1−σ to Kumar, then Kumar’s
expected utility is given by

1

2
log (

√
eA + (1− σ)

√
eB) +

1

2
log (λ[

√
eA + (1− σ)

√
eB]) ,

and to maximize this it is necessary to maximize
√
eA + (1 − σ)

√
eB. This is just the same

exercise as in Question 2(a), where we replace A by 1 and B by 1−σ, so effort on the rented
plot must be given by

eB =
(1− σ)2

1 + (1− σ)2
,

as claimed. So Malini’s expected rent is given by

(4)
1

2

σ(1− σ)√
1 + (1− σ)2

+
1

2

σ(1− σ)λ√
1 + (1− σ)2

=
1 + λ

2

σ(1− σ)√
1 + (1− σ)2

,

as the problem asserts.

(e) Use part (c) and the formula in part (d) to show that if λ is large enough, a risk-neutral
Malini prefers sharecropping to fixed rent tenancy. Intuitively explain your answer.

All you have to do is show that this last calculated rent in equation (4) strictly exceeds
√
2 if

λ is large enough, because already know from part (c) that R cannot exceed
√
2. But this is

easy. Just fix the share σ at any value — say 1/2 — and note that the expression in (4) then
grows linearly in λ, and so must become unboundedly high, higher than

√
2 in particular for

sufficiently large λ.

(4) Miguel works on a tea plantation as a plucker. (If you are wondering how someone named
Miguel could be working on a tea plantation, remember that Argentina is the ninth largest
exporter of tea in the world!) He gets paid a basic wage — we will call it b — and an extra
incentive payment s for every kilo of tea leaves that he plucks. So his total payment w is
given by

w = b+ sy,

where y is the number of kilos of tea that he plucks. Miguel has a “consumption utility
function” given by u(w) = 100 logw, and his cost of plucking y kilos of tea is given by y. So
Miguel’s net utility is given by

u(w)− y.

(a) For any given b and s, show that Miguel will pluck y kilos of tea, where

y = 100− b

s

provided that b < 100s, otherwise Miguel won’t pluck any tea at all!

Given b and s, Miguel will choose output y to maximize

u(w)− y = 100 log(b+ sy)− y.
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Writing down the first order condition to set marginal benefit equal to marginal cost, we
have:

100s

b+ sy
= 1, or y = 100− b

s
.

When b ≥ 100s, this first-order condition cannot be met for any positive level of plucking —
the marginal benefit of the additional consumption is too small relative to the marginal cost
of effort.

Can you explain intuitively why b and s affect the amount of tea plucked in the way they do
here? In particular, why does Miguel’s effort drop to zero if b ≥ 100s?

Notice that as b goes up, Miguel lowers his output. The reason is that a higher baseline wage
has an “income effect”: it reduces the marginal utility of additional wages. So Miguel cuts
back on the effort to pluck tea. In fact, in this case he exactly cuts back on income so it is
just the same as before, and puts all the extra gains into “effort saving.” (You might want
to think about why this happens here, or read more about it below.)

When b exceeds 100s, then you cannot even get a first order condition that holds with equality,
because the marginal benefit of even the first unit of effort is smaller than the marginal cost.
At that stage Miguel just stops working . . .

Some more comments:

(i) This result on b cutting back effort to the point at which income stays constant is pretty
general as far as u goes. If he had an abstract (but strictly concave) utility function, his first
order condition would read

su′(b+ sy) = 1,

and you can see that b+ sy — which is his total income — does not change as you change b.

(ii) But it does depend on the linearity of effort cost. For instance, if his cost of effort is
convex, then the first order condition is

su′(b+ sy) = c′(y)

and now b+ sy will change as b changes — can you see why, and in which direction?

On the other hand, an increase in s increases Miguel’s effort, because now he is incentivized
by the piece rate. This is why plantation owners don’t like paying a baseline wage b whenever
tasks are observable. Sometimes they have to be pushed to do it by government law. (And
it is the same for many jobs in the United States — Uber won’t hire drivers for a wage, and
real-estate companies pay their employees on commission.)

(b) Assume that the minimum wage b is fixed by the government at a strictly positive number,
but smaller than 100. The tea plantation cannot tamper with it, but can freely choose the
piece rate. The plantation wants to maximize profits from hiring Miguel, which are given by

y − w = y − [b+ sy] = (1− s)y − b.
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where we are setting the price of tea equal to 1. Prove that for any b < 100, the tea plantation
will want to set

s =

√
b

10
.

assuming that it hires Miguel to begin with. Notice how as b goes up, s goes up as well.
Why?

Given b, the plantation choose the piece rate to maximize its profits, knowing that Miguel
will behave the way he does as described in the previous part. In short, the plantation seeks
to maximize

(1− s)y − b

by choosing s, knowing that y = 100 − (b/s). In other words, the plantation chooses s to
maximize

(1− s)

[
100− b

s

]
− b

where b is given. Setting the derivative of this expression (with respect to s) equal to zero
(using the product rule), we get the first order condition:

−
[
100− b

s

]
+

b(1− s)

s2
= 0,

and simplifying this expression, we obtain:

s =

√
b

10
.

The piece rate s has to climb with the baseline wage b because Miguel has a diminishing
marginal utility of income. The richer Miguel is at baseline, the larger will have to be the
piece rate in order to adequately incentivize him. We continue this line of reasoning in the
next question.

(c) Prove that if the baseline wage b goes above 25, the plantation would rather not hire
Miguel to begin with.

Of course the above solution maximizes profits for the the plantation, but those profits may
be negative — after all, it is being asked to pay Miguel a baseline wage and so whether or not
it makes positive profits from Miguel depends on whether he plucks enough tea in response
to s. To examine this, substitute the choice of s from the previous question — which is the
best that the plantation can do under the circumstances — into the plantation’s expression
for profit, yielding a profit of

(1−s)y−b = (1−s)

[
100− b

s

]
−b =

10−
√
b

10

[
100− 10

√
b
]
−b = (10−

√
b)2−b = 100−20

√
b,

which means that if b > 25, the plantation’s profit from hiring Miguel is negative.

(5) An economy has a labor force of 100, and a production function that uses labor to
produce output. Output price is fixed at 1, and the production function is given by

y = Aℓ1/2
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with labor chosen to maximize profit at the going wage rate. If a worker is unemployed, she
obtains the net monetary equivalent of $30 per day, perhaps doing home tasks or working on
the farm. If she is employed, she earns a wage of w (to be determined), but has to work at
a minimum pace, which incurs a personal cost of $27. Each worker has a discount factor of
δ = 9/10.

(a) Assume that detection is certain if you work below the minimum required pace, and
that no fired worker is ever hired again (which may sound unreasonable but let’s do it for
practice, and also for a reason that I will reveal below). Then, show that the minimum wage
for self-enforcement is $60.

Drawing on class notes, the self-enforcement constraint in this case is given by

x ≤ δ[w − s]

where x is the effort cost (or equivalently, the gain from shirking) — here it is 27 — and s
is the payoff from staying at home (here it is 30). Using these numbers along with δ = 9/10,
we see that

27 ≤ 9

10
[w − 30]

The lowest wage for self-enforcement is the one that meets this with equality, so w = 60.

(b) Remember there are 100 units of labor in the whole economy. Show that if the techno-
logical coefficient A is smaller than 1200, then there is involuntary unemployment, and the
market wage settles at 60. But also show that if A exceeds 1200, the market wage rises above
the minimum necessarily for self-enforcement, and there is full employment.

For any w, the demand for labor is given by the first order condition to profit maximization
of:

y − wℓ = Aℓ1/2 − wℓ.

Taking derivatives, we see that the first order condition is:

(A/2)ℓ−1/2 = w, or equivalently, ℓ =

(
A

2w

)2

.

Now first fix w = 60, so that for this case, we simply have

ℓ =

(
A

120

)2

.

This is just fine as long as total labor demand does not exceed the supply of 100. In other
words, to make this work, we need:(

A

120

)2

≤ 100, or equivalently, A ≤ 1200.

Notice that for all A < 1200, demand is smaller than supply, but that’s how things will
remain. None of the unemployed can undercut the wage from 60, because that won’t be
a credible promise — employers will think that they will shirk on the job. So we have an
equilibrium with involuntary unemployment. That answers the first part of this question.
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What happens, now, once A crosses 1200? Then the demand for labor exceeds its supply,
and now the wage must be bid up from its minimum of 60 — there is no credibility problem
on the part of workers when the wage is going up, because workers will continue not to shirk.
So the wage has to rise until the demand just equals the supply, or in other words: the new
wage, call it w∗, must solve(

A

2w∗

)2

= 100, or equivalently, w∗ =
A

20
.

Remember again that this case can only come into being when A ≥ 1200. For still higher val-
ues of A, the wage will keep climbing and there will be full employment. The self-enforcement
constraint is no longer binding, and the model looks very classical in this zone.

The market wage can only rise strictly above the self-enforcement constraint if there is full
employment. Otherwise an unemployed person could credibly bid that wage down (slightly)
and get employed — because the self-enforcement constraint would still hold.

(c) Now I want you to contrast this scenario with the realistic case, in which a fired worker
might be re-employed. Let this re-employment probability exactly equal the fraction of people
who are employed in the economy; i.e., it is equal to the employment rate e. Now show that
the self-enforcement constraint is given by:

(5) w ≥ 30
2− e

1− e
.

Again we recall our class notes but now with the additional twist that a fired worker gains re-
entry into employment with probability q in each period. Now the self-enforcement constraint
is given by

27 = x ≤ δ(1− q)[w − 30] =
9

10
(1− e)[w − 30].

Moving terms around and simplifying, we get the formula (5).

(d) This is very different from part (b). Show that there can never can be full employment
in this scenario, unlike in part (b). In particular, the self-enforcement constraint always holds
with equality. Carefully explain why things are so different now.

The proof is by contradiction. Suppose that there is full employment in any equilibrium.
Then it must be the case that e = 1. But then

w ≥ 30
2− e

1− e
= ∞,

and at an infinite wage, the demand for labor must fall to zero, contradicting the fact that
labor demand is enough for full employment. So there is involuntary unemployment in any
equilibrium no matter how massively large A is, and the wage is pinned down by equation
(5) throughout. The contrast can be explained by noting that as the labor market gets
tighter, the shirking constraint also gets very expensive, because workers can find a job again
with ease. So the wage rate has to climb along with A, which keeps the demand for labor
always below 100. What a dramatic difference. In the first case we could blacklist a worker
permanently; in the second we cannot.
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(e) Now we will work to solve for the equilibrium in this labor market. First note that for
any wage rate w, the demand for labor is given by

ℓ =

(
A

2w

)2

.

(you will surely have solved for this earlier, but if not, do so now). Combine this with the
self-enforcement constraint (5) that we know to always hold with equality:

w = 30
2− e

1− e

to show that in equilibrium, e must solve the equation

600
√
e

(
2− e

1− e

)
= A,

where you will need to use the fact that the employment rate e is the total employment ℓ
divided by the total labor force, which is 100. (That is, e = ℓ/100.)

We know that the demand for labor is given by

ℓ =

(
A

2w

)2

.

Combining this with the fact that

w = 30
2− e

1− e
,

and remembering that e = ℓ/100, we must conclude that

e =
ℓ

100
=

1

100

 A

60
[
2−e
1−e

]
2

.

Take square roots and move terms around now to get the solution to the problem. Examine
this solution and notice that no matter how big or small A is (as long as it is a positive),
any solution to e lies strictly between zero and 1. Unemployment is endemic no matter how
productive the economy is.

Solution to optional problem:

(6) Consider a production cooperative with just two farmers. Each farmer chooses indepen-
dently how much labor — ℓ1 and ℓ2 — to supply to the cooperative. The cooperative output
is given by

Y = A(ℓ1 + ℓ2)
α

where A > 0 and α lies between 0 and 1. Each unit of labor is supplied at an opportunity
cost of w, so the total cost of effort supply is wℓ1 for farmer 1 and wℓ2 for farmer 2.

(a) Draw production and total cost as a function of labor input. Find (both diagrammatically
and using first order conditions) the amount of labor input that maximizes farm surplus.
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Drawing the production function as a function of ℓ1 + ℓ2 is a completely standard exercise.
Note that farm surplus is given by

A(ℓ1 + ℓ2)
α − w(ℓ1 + ℓ2)

and so we can find the aggregate labor input that maximizes surplus. It is given by some
number L∗ which maximizes

ALα − wL

and is solved out by setting marginal product equal to marginal cost:

(6) αALα−1 = w, or transposing terms, L∗ =

(
αA

w

)1/(1−α)

.

Notice that the division of this labor L∗ between the two farmers is irrelevant for the maxi-
mization of the surplus.

(b) Now suppose that each labor is supplied independently by each cooperative member in
an effort to maximize her own net profit. Say that a pair of labor allocations (ℓ1, ℓ2) forms
an equilibrium if, given e2, the choice of e1 is optimal for farmer 1, and given e1, the choice
of e2 is optimal for farmer 2.

Show that if total output is divided equally among the farmers, production must fall short
of the answer in part (a).

If output is divided 50-50, and given farmer 2’s input ℓ2, farmer 1 will want to maximize his
own net return, which is

(7)
1

2
A(ℓ1 + ℓ2)

α − wℓ1,

and similarly farmer 2 will choose ℓ2 (given ℓ1) to maximize

(8)
1

2
A(ℓ1 + ℓ2)

α − wℓ2.

Here is how we solve this problem. First define L̂ as the solution to

(9)
α

2
AL̂α−1 = w, or transposing terms, L̂ =

(
αA

2w

)1/(1−α)

.

This is just a mathematical definition, but now we give it economic meaning. Notice that if
farmer 2 is anticipated to provide input ℓ2 smaller than L̂, the maximization of farmer 1’s
payoff will lead him to just make up the difference between ℓ2 and L̂; that is, he will set
ℓ1 = L̂− ℓ2. Likewise farmer 2 will do the same, given his anticipation of ℓ1. You can solve
both these by going to the maximization problems in equations (7) and (8) and writing down
the first order conditions for maximization.

Additionally, observe that if, say, ℓ2 ≥ L̂, then farmer 1’s best input choice is just ℓ1 = 0,
because the marginal product of his labor will be lower than his marginal cost right from the
get-go. The same is true of farmer 2 of course.

It follows that there are many equilibria of this situation. These are all the combinations of
ℓ1 and ℓ2 which add up to L̂.
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But notice, to complete this part, that L̂must be smaller than L∗. Compare the two solutions:
clearly, L̂ is smaller. The equilibrium, no matter which one it is, fails to maximize social
surplus.

(c) Try to intuitively relate this exercise to the problem of inefficiency in sharecropping.

Omitted. left to you.

(d) Next, suppose that farmer 1 receives a share s > 1/2 of the total output, while farmer 2
gets 1−s (everything else is the same as before). Show that there is now a unique equilibrium
labor allocation, and describe what it looks like.

Define two numbers, L1 and L2. The first sets the marginal product of labor, multiplied by
the share accruing to farmer 1, equal to marginal cost:

(10) αsAL1
α−1 = w, or transposing terms, L1 =

(
αsA

w

)1/(1−α)

.

The second does the same using the share going to farmer 2:

(11) α(1− s)AL2
α−1 = w, or transposing terms, L2 =

(
α(1− s)A

w

)1/(1−α)

.

Because s > 1 − s (s > 1/2), it is easy to see that L1 > L2. Now observe that by the same
logic as in part (b), farmer 1 wants total effort to add up to L1, and will put in effort to make
up any difference between ℓ2 and L1, while farmer 2 wants effort to add up to L2, and will
put in effort to make up the difference between ℓ1 and L2. If any farmer is putting in extra
effort over the other farmer’s total, the other farmer will put zero effort.

Combine these thoughts. You will see that the only equilibrium when s > 1/2 is that farmer
1 puts in all effort ℓ1 = L1, and farmer 2 puts in nothing!

(e) Show that if if s is slightly larger than 1/2, then farmer 1 — who gets the larger share
— is actually worse off in terms of her net payoff.

So in particular, even if s is a tiny bit bigger than 1/2, farmer 1 will put in all the effort.
What are their payoffs? For farmer 1, it is sALα

1 − wL1, and for farmer 2 it is (1 − s)ALα
1 ,

with no effort cost. Now you can see that their output shares are almost the same, but farmer
1 incurs all the cost. It follows that farmer 1 has to be worse off than farmer 2, even if he is
getting a slightly larger share of total output! Crazy, huh? But this happens all the time in
real life — think about it.

(f) Parametrically moving s from 1/2 to 1, describe what happens to production and labor
efforts. Show that the system maximizes overall social surplus when one share equals 1.

As farmer 1’ share varies from 1/2 to 1, his choice of L1 will also vary, so write this explicitly
as a function of s. Simply rewriting (10), we see that

L1(s) =

(
αsA

w

)1/(1−α)

,
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for all such s. Meanwhile, we know the equilibrium for any s > 1/2: ℓ1 = L1(s), while
ℓ2 = 0. Notice how total effort converges to the first-best surplus maximizing solution as
s → 1, because L1(s) converges to L∗ as defined in equation (6). The division of surplus
between the two is unequal and ambiguous, but we do know that at s = 1 farmer 1 gets
the whole surplus and farmer 2 gets nothing. Surplus maximization in this cooperative is
associated with high inequality.

(g) The result in (f) is strange on a number of grounds! First, efficiency is reached when the
system is highly unequal. Second, what happened to the double moral hazard problem we
discussed in class? Shouldn’t that place limits on one side being a residual claimant? Think
about this intuitively and now move to the next part.

In the double moral hazard problem discussed in class, both inputs are needed separately
and cannot be fully substituted for. The landlord supplied one kind of input and the tenant
supplied another, so we need incentives for both of them. Here the inputs (efforts) are perfect
substitutes: they enter into the production function additively, so there is no need to provide
incentives on both sides.

(h) Change the problem by supposing that the joint production function is of the form

Y = Aℓ
1/3
1 ℓ

1/3
2 .

Notice that we have diminishing returns in the two inputs jointly (1/3 + 1/3 < 1) because
land is also an input and it is fixed.

Now which value of the share do you think maximizes social surplus? Explain why the answer
is so different from the preceding answer.

Ah, now things are different, because now, as you see, the inputs are not perfect substitutes
— the isoquants across these inputs are curved, and it would be great to incentivize both
of them to put in effort. Let’s see what the equilibrium looks like in this case for any share
s ≥ 1/2 (the case in which s ≤ 1/2 is just a mirror image of the same problem and does not
have to be solved out separately.

Now a pair (ℓ1, ℓ2) is an equilibrium if, given ℓ2, ℓ1 maximizes farmer 1’s return:

sAℓ
1/3
1 ℓ

1/3
2 − wℓ1,

while given ℓ1, ℓ2 maximizes farmer 2’s return:

(1− s)Aℓ
1/3
1 ℓ

1/3
2 − wℓ2.

It is easy to see that farmer 1’s first order condition is given by

(12)
sA

3
ℓ
−2/3
1 ℓ

1/3
2 = w, or

sA

3
(ℓ1ℓ2)

1/3 = wℓ1

while farmer 2’s corresponding first order condition is given by

(13)
(1− s)A

3
ℓ
1/3
1 ℓ

−2/3
2 = w, or

(1− s)A

3
(ℓ1ℓ2)

1/3 = wℓ2
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Multiplying (12) and (13) together, we see that

(14)
A2s(1− s)

9
(ℓ1ℓ2)

2/3 = wℓ1ℓ2, or (ℓ1ℓ2)
1/3 =

A2s(1− s)

9w

Using this solution in (12) and (13), we must conclude that

(15) ℓ1 =
A3s2(1− s)

27w2
and ℓ2 =

A3s(1− s)2

27w2
.

Combining (14) and (15) with the formula for social surplus, which is

SS = Aℓ
1/3
1 ℓ

1/3
2 − wℓ1 − wℓ2,

we must conclude that

SS =
A3s(1− s)

9w
− w

[
A3s2(1− s)

27w2
+

A3s(1− s)2

27w2

]
=

2A3s(1− s)

27w
.

(Can you see how to get the last equality?) Now all the hard work is done, and you can
see that to maximize social surplus, the best choice is s = 1/2! Why? Because the function
s(1− s) is maximized at 1/2.


