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(1) Suppose that fax machines are made newly available in NeverNeverLand. Companies are
deciding whether or not to install a machine. This decision partly depends on how many
other companies are expected to install fax machines. Think of a graph that describes how
many companies will install fax machines as a function of how many companies are expected
to install fax machines.

We will work with a particular complementarity map x(n). It follows the equation A+(0.8)n2

whenever this value is between 0 and 1. If this value crosses 1, we set x(n) = 1. If this value
is negative, we set x(n) = 0.

(a) Draw and describe this graph for three values of A: A = −0.5, A = 0.1, A = 0.3, and
A = 0.5. Pay particular attention to the value of x(n) at the edges 0 and 1, and to the points
where it hits the diagonal of the graph. Also, in the region where x(n) lies strictly between
0 and 1, make sure you explain intuitively why an increase in n is increasing x(n).
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The number of companies x who want to install (as a function of the number of companies
n who are expected to install) is given by the equation:

x = A+ (0.8)n2

as long as x, calculated by this equation, lies between zero and 1. Specifically, x(n) = 0 for
all n such that x as defined above is negative, x(n) is given by the above equation when it
generates values between zero and 1, and once the above equation generates larger numbers
than 1, we set x(n) = 1. The diagram above captures this for the four cases A = −0.5,
A = 0.1, A = 0.3, and A = 0.5. Each panel plots the function A+ (0.8)n2, but “truncates”
it at the bottom by 0 and at the top by 1. So, for instance, when A = −0.5, the resulting
x(n) curve is flat and then follows the A+(0.8)n2 function once that becomes positive. And
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when A = 0.3, the function starts positive anyway so x(n) faithfully follows it, but once it
rises above 1 we truncate x(n) at the top.

In the strictly increasing segment, the idea is that if more companies are using fax machines,
it becomes easier to communicate by fax, so x(n), the fraction of companies that want to use
those machines, goes up as well.

(b) Analyze the equilibrium adoption of fax machines in NeverNeverLand as A varies. For
which ranges of A does a unique equilibrium exist? When multiple equilibria exist, what do
they look like? Provide some intuition for your answer.

Intuitively, when A is low, it should be optimal never to install fax machines. And when
A is large, it should optimal to always install fax machines, so there should be a unique
equilibrium for both low and high A. To go along with this intuition, in the first panel of
the diagram, A is low (negative in fact) and there is only one contact between x(n) and the
diagonal, and that is at n = 0. That is the unique equilibrium, with zero adoption of fax
machines. In the second panel, there is again a unique contact with the diagonal, but this
time at a strictly positive value as shown. This situation will also have a unique equilibrium,
but in that equilibrium there will be some positive adoption. In the third panel, there are
three intersections, one with low adoption, one with high, and one with intermediate values
of adoption (see the intersection point of x(n) with the diagonal for between 0.5 and 1). This
last one you should check is “unstable”. Finally, in the fourth panel, there is again just one
contact, and that is at n = 1.

In class, we are particularly interested in cases such as those depicted by the third panel,
where there may be multiple steady state outcomes to the same underlying system, as in the
case of qwerty and Dvorak.

Which values ofA generate these multiple solutions? You can easily see this in your mind’s eye
by sliding A up continuously as you move from the first to the fourth panel. At intermediate
values of A, the complementarity generates two stable solutions: one with low adoption of
fax machines, the other high. And in those cases, there is always an unstable solution in
between.

You can do all this diagrammatically. What follows is not needed for this question but if you
took this path, you are really understanding the material more deeply.

To find the range of A, we first ask the question: when does the equation

A+ (0.8)n2 = n

have one solution or more? This will help build our answer. The theory of quadratic equations
says that the roots of the equation are given by

n =
1±

√
1− 4× (0.8)×A

2× 0.8
=

1±
√

1− (3.2)×A

1.6

Notice that if A > 1/3.2 ≃ 0.312, then there is no solution (all roots are imaginary). This
is the threshold beyond which you have a picture like Panel 4 of the Figure above. In that
case, there is a unique equilibrium n∗ = 1. Everyone adopts fax machines.
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For every value of A smaller than 1/3.2, there are indeed two real solutions, but we have to
see if they both lie between zero and 1. The larger solution is

n =
1 +

√
1− (3.2)×A

1.6
and you can easily check that if this is larger than 1, then we have a situation like the first
or the second panel with just one unique equilibrium. That is the same as the condition that√

1− (3.2)×A > 0.6, or equivalently,

1− (3.2)×A > 0.36, or A < 0.2.

In all such cases, and as long as A > 0, there is just one solution to A+(0.8)n2 = n that lies
between 0 and 1, and that is the lower root

n =
1−

√
1− (3.2)×A

1.6
.

which corresponds to the situation in Panel 2. And once A goes below 0, this lower root
turns negative. We still have a unique equilibrium, but now at n∗ = 0, as in Panel 1.

Panel 3 — which is the case of multiple equilibria — corresponds to the remaining interme-
diate range of A, which is 0.2 ≤ A ≤ 1/3.2.

(2) Suppose that each of N citizens in the country of Taxland needs to pay a tax of T every
year to the government. Each citizen may decide to pay or to evade the tax. Assume that
each citizen is risk-neutral and simply seeks to maximize expected income net of any taxes
or fines.

If an evader is caught, Taxland imposes a fine of amount F , where F > T . However, the
Government of Taxland has limited resources to detect evaders. Assume that out of all the
people who evade taxes, the government has the capacity to audit a maximum of m of them,
where 1 ≤ m < N .

Distinguish between two cases: In Case 1,m persons are randomly chosen from the population
to be audited. If any of these is an evader, then conditional on being audited, he will be
fined for sure. In Case 2, each evader — and no one else — has an anomaly on his tax return
which alerts the government. Up to m of them will be randomly audited — and fined.

(a) Write down the expected payoffs in each case from evasion, and show that there are no
complementarities in Case 1, while there are complementarities in Case 2.

If I am an evader, then in Case 1, I will be caught with probability p = m/N , where N is
the total population. In Case 2, the probability of being audited is m/n, where n is now
the number of actual evaders (counting me). Well, it is slightly more complicated than that,
because if m ≥ n, then I will be audited with probability 1, and otherwise with probability
m/n, so in the case the exact description is that p = min{m/n, 1}. E.g., if n = 3 and m = 1,
then there are three evaders and the chance of my getting caught is one out of three or 1/3.
If n = 2 and m = 3, then I will be audited for sure.)

Anyway, denote the audit probability in either Case by p. If I am not caught, then I pay
nothing. But if I am caught, then I pay a fine of F . Thus my expected payout is p times
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F . As a potential evader, I will compare this loss with the sure payment of T (if I do not
evade), and take the course of action that creates smaller losses. It’s a matter of comparing
T to pF , and choosing the smaller expected payment. Notice that p could be endogenous
and that is what this question is all about.

Notice that in Case 1, this value is independent of the number of evaders n, so that there
are no complementarities (the net payoff from evasion is constant). But in Case 2, p falls
with the number of evaders n, at least when n ≥ m. This is a case of complementarities: if
one person becomes an evader, she makes it easier for other people to evade. This is because
the probability of getting caught comes down, so that the expected losses from evasion come
down as well.

(b) Contrast Case 1 and Case 2. In Case 1 show that there is typically a unique equilibrium.
In Case 2, show that it is always an equilibrium for nobody in society to evade taxes. Are
there another equilibria as well? Describe parametric configurations of (m,n, T, F ) for which
such equilibria will exist, and also describe the equilibria.

In Case 1 there is a unique equilibrium, yielding full evasion or no evasion depending on
whether T − (mF/N) is positive or negative. (There are only multiple equilibrium outcomes
in the knife-edge case in which T = mF/n.) In Case 2, to see that “no evasion” is an
equilibrium, suppose that nobody in the economy is evading. You are a potential evader. If
you pay your taxes you will pay T . If you evade, then n = 1, while m ≥ n, so p has to be 1,
which is just another way of saying that you will be caught for sure. So that your expected
loss is simply F . But F > T by assumption. It follows that if nobody else is evading, you
won’t evade either. The same mental calculation holds for everybody, so that “no evasion”
all around is an equilibrium.

What about everybody evading? Suppose that this is indeed happening around you, and
you are considering evasion. If you do evade, then n = N , so that your expected losses are
mF/N . It follows that if mF/N < T , you will jump on the bandwagon and evade as well.
Thus “widespread evasion” is also an equilibrium provided that the condition T > mF/n
holds.

(3) The country of Skillover has the good fortune of generating spillovers in skills! Each
citizen in Skillover simultaneously decides whether to acquire “high skill” at cost c > 0, or
remain low-skilled. Let yh and yℓ denote the incomes earned by high- and low-skilled workers.
Now here comes the spillover:

yh = y0h + nH and yℓ = y0ℓ + nL,

where y0h > y0ℓ are baseline values for the two incomes, H and L are positive constants, and
n is the fraction of the population that chooses to become high skilled. Thus in Skillover, a
person’s productivity in both kinds of jobs is positively linked not only to her own skills, but
also to the skills of her fellow workers.

(a) There are always positive spillovers (H > 0 and L > 0) but when exactly is there a
complementarity?
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Our formulation captures the following idea: a person’s productivity is positively linked not
only to his own skills, but also to that of his fellow workers. But more than that is true: note
that yh − yℓ = (y0h − y0ℓ ) + n(H − L), which means that the difference between the incomes
from low and high skills widens with more people acquiring high skills, as long as H > L. In
this case, it follows that whenever a person chooses to acquire skills, she increases the return
to skill acquisition by everybody else. This is precisely the complementarity that underlies
any coordination problem. So the answer is: there is a complementarity if H > L.

If H ≤ L, there is still the spillover created by education but it does not generate a com-
plementarity. If H is smaller than L, then the gap between high-skill and low-skill income
actually narrows as n goes up, leading to people wanting to take less education as the edu-
cation around them gets larger.

For the next question, define ∆ ≡ y0h− y0ℓ to be the “baseline difference” between skilled and
unskilled incomes.

(b) Show that if ∆ < c < ∆ + (H − L), there are three possible equilibria: one in which
everybody acquires skills, one in which nobody does, and a third in which only a fraction
of the population becomes high-skilled. Give an algebraic expression for this fraction in the
last case. Explain why this equilibrium is “unstable” and is likely to give way to one of the
two extreme cases.

Assume that ∆ < c < ∆ + (H − L). First let us see if “no skill acquisition” can be an
equilibrium. To this end, suppose that no one in society is acquiring skills: then n = 0. If
you are thinking of becoming high-skilled, then the gain in your income is yh − yℓ, which is
just ∆ (because n = 0). If ∆ < c (which is assumed, see above), then it is not worthwhile for
you to acquire skills. We have thus shown that if everybody believes that nobody else will
acquire skills, then no one will indeed acquire skills. Such beliefs therefore form a self-fulfilling
prophecy.

Now let us see if universal skill acquisition can be an equilibrium. Suppose that you believe
that everybody else will acquire skills: then n = 1. Therefore, if you are thinking of becoming
high-skilled, then the gain in your income is yh − yℓ, which is ∆ + (H − L) (because n = 1).
If ∆ + (H − L) > c (which is assumed — see above) then it is worthwhile for you to acquire
skills. We have thus shown that if everybody believes that everybody else will acquire skills,
then everyone will acquire skills. These beliefs also form a self-fulfilling prophecy.

Finally, there is a third equilibrium in which just the right amount of people invest in skill
acquisition so that everybody is indifferent between acquiring or not acquiring skills. This is
given by a fraction of skilled people n∗ such that ∆+ n∗(H −L) = c, This is an equilibrium
because no one is doing anything suboptimal given his or her beliefs. But you can intuitively
see why this equilibrium must be unstable. If for some reason the fraction of skilled people
exceeds n∗ even by a tiny amount, then it becomes strictly preferable for everyone else to
acquire skills, so that we rapidly move to the universal skills equilibrium. If on the other
hand, n falls below n∗ (if only by a tiny amount), everyone will desist from acquiring skills,
so that we move towards the no skills equilibrium.

(c) Describe the set of equilibria when H < L.
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When L > H, this means that low-skill income is more responsive to the fraction of high-
skilled people, than high-skill income. The condition yh − yℓ = [y0h − y0ℓ ] + n(H − L) =
∆ + +n(H − L) is now seen to yield the opposite conclusion: that there will be a unique
equilibrium. To see this, first suppose that even when everyone is skilled, the income gap
exceeds the cost; that is:

Case (i). ∆ + (H − L) ≥ c. Then, remembering that H − L < 0, it must be that for every
0 ≤ n < 1,

yh − yℓ = ∆+ n(H − L) > c,

and so the unique equilibrium is that everyone acquires skills.

Now consider the opposite situation, that even when no one is skilled, the income gap between
high and low skilled people is too low:

Case (ii). ∆ ≤ c. Then, again remembering that H − L < 0, it must be that for every
0 < n ≤ 1,

yh − yℓ = ∆+ n(H − L) < c,

and so the unique equilibrium is that no one acquires skills.

Finally, look at the intermediate case:

Case (iii). ∆ > c > ∆ + (H − L). Then it is easy to see that there is once again a unique
equilibrium at n∗ skilled people, where n∗ is such that

c = ∆+ n∗(H − L).

In this case there cannot be any multiple equilibrium, for exactly the same reason as the
traffic congestion example in the text cannot exhibit multiple equilibria.

(d) Consider another variation, this time with no skill spillover onto incomes. Specifically,
suppose that yh = y0h and yℓ = y0ℓ are both fixed and independent of n (that is, H = L = 0).
However, suppose that the cost of individual education is indeed affected by the presence of
skilled people c(n) = (1− n)/n. (The idea here is that it is easier to learn if there are more
educated people around). Describe the set of equilibria.

In this case, note that the cost of acquiring skills becomes infinitely high as n becomes close
to zero, while the cost declines to near zero as n approaches one. Thus we see again that there
are three equilibria. In the first, there is no skill acquisition because everyone, expecting that
there is no skill acquisition, feels that the cost of acquiring high skills will be very high, and
so desists from doing so. At the same time, the expectation that everyone acquires skills
is also a self-fulfilling prophecy, because in this case the cost of education is very low. And
there is a third equilibrium where people are indifferent between the two options. Just as in
part (a), this equilibrium must be described by the condition that yh − yℓ = y0h − y0ℓ = 1−n∗

n∗ .

(4) Multiplania is a community that wants to recycle its glass and plastic, and encourages
its residents to do so. But you have to take the trash pretty far to find recycling bins, so it is
inconvenient to do so. Everyone has a benefit b > 0 from just throwing all glass and plastic
into the garbage.
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On the other hand, anybody who doesn’t recycle can be seen not doing so, and there is an
individual stigma or shame attached to it, a cost s(n), where n is the overall fraction of the
community who actually recycle. Assume that s(n) = a+ cn, where a ≥ 0 and c > 0.

The payoff from not recycling is the benefit minus the shame. The payoff from recycling is
just taken to be zero.

(i) Interpret the function s(n). In particular, why should c be positive? What about a?

The function s(n) is increasing in n if c > 0. (You could draw a picture.) It means that if
more people recycle, the (fewer) people who don’t would stand out more easily and in the
eyes of the community there would be a bigger sense of shame. If everyone is flouting the
norm, then the sense of shame would be pretty small. We have still allowed for people to feel
a “baseline” sense of shame a, which may or may not be zero.

(ii) Describe the range of values of (a, b, c) for which there is a unique equilibrium.

For there to be a unique equilibrium, the function that maps expected number of recyclers
n into the actual number of recyclers x must lie everywhere above or everywhere below the
450 line. For the first, we need

b < s(n) = a+ cn

for all n. In that case, x = 1 no matter what the value of n, and everyone recycles. But
for the above to hold for every n, it is necessary and sufficient that it holds at n = 0. That
implies a > b, which is the required condition.

For the second case, we need

b > s(n) = a+ cn

for all n. In that case, x = 0 no matter what the value of n, and no one recycles. But for the
above to hold for every n, it is necessary and sufficient that it holds at n = 1. That means
b > a+ c, which is the required condition.

(iii) Describe the range of values of (a, b, c) for which there is are multiple equilibria, and
describe all the equilibria, including the unstable one.

In the remaining region; that is, whenever

a ≤ b ≤ a+ c,

there are multiple equilibria. Now there is one equilibrium where no one recycles — after all,
if n = 0, then x is also equal to zero because b ≥ s(0) = a. There is another where everyone
recycles — after all, if n = 1, then x is also equal to 1 because b ≤ s(1) = a + c. Assuming
that strict inequality holds everywhere above (it will get you a bit of extra credit if you make
this point clear), there is a third equilibrium located at the point n∗ where

b = s(n∗) = a+ cn∗,

or equivalently, at

n∗ =
b− a

c
.

This equilibrium is always unstable. Draw the picture.
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(iv) In the world of part (iii), consider a policy that imposes a fine F > 0 on every garbage
thrower. Show that the threshold value for the population share of recyclers that tips the
society over into the good equilibrium (i.e., the unstable equilibrium value) must fall with
the fine.

With a fine F , the net payoff from not recycling is given by

b− s(n)− F = b− a− cn− F.

A bad equilibrium in which n = 0 can still be supported, therefore, if when n = 0, everyone
derives a net benefit from not recycling; that is, if

b− a− F > 0.

So the situation looks as in this diagram:

***
n

n1=0 n2 n3=1

x(n)

and the unstable threshold is given by the point n∗
2 where the net payoff from recycling is

exactly zero; that is, b− a− cn− F = 0, or

n∗
2 =

b− a− F

c
.

It is easy to see from the above equation that as we increase the fine, the threshold population
needed for the unstable tip-over to recycling becomes lower.

(v) Using part (iv), can you discuss a situation where we begin with a bad equilibrium
(i.e., one in which no one recycles), impose a fine, then remove the fine after a temporary
imposition, with the society now in a good equilibrium with recycling?

Suppose that we are in the situation of part (ii), where we have multiple equilibria but are
currently stuck in the bad equilibrium with n∗ = 0. Choose a fine F such that F > b. Now
there is no reason to rely on shame, because the fine is higher than the benefit from throwing
garbage, so now everyone will recycle. After this is in place, remove the fine. The equilibrium
with n∗ = 1 will stay in place without the fine. Only if many people simultaneously start
throwing garbage might society move back to the equilibrium where everyone throws garbage
on the street. In this sense, temporary policy interventions can have a permanent effect.

(5) In the question that follows, n refers to the number of people rather than a fraction of
the population. In the land of Pampa, living in the countryside gives you a fixed payoff of
100 (Pampa has lots of land), while living in a city gives you a payoff that first increases with
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the number of people living in the city (agglomeration), and then declines after the number
of people goes above a certain threshold (congestion). Let us write this payoff as

r = 20n− n2/2,

where n is the number of city dwellers in that particular city.

(a) Let N be the total population in Pampa. If only one city can exist in the entire country,
trace out the set of equilibria (i.e., population allocations between countryside and city) as
N varies from 0 to infinity.

Suppose there is one city. Notice that r is maximized by setting n = 20 (write down the
maximization problem for r and set the derivative with respect to n to equal zero). It follows
that the maximum value of r is given by 202 − 202/2 = 200. But of course, the actual value
of r will depend on how many people choose to live in Pampa. To find this, look at the
intersections of the line 20n− n2/2 with the value 100. That means you solve the quadratic
equation

20n− n2/2 = 100, or n2/2− 20n+ 100 = 0,

which has the pair of solutions

n1 and n2 = 20±
√

400− 4 ∗ (1/2) ∗ 100, or n1 = 20−
√
200 and n1 = 20 +

√
200.

Note that if the population N is less than n1, there is just one equilibrium, everyone in the
country. If N > n1, but no bigger than n2, then there are three equilibria.1 The two stable
ones involve everyone being in the city, or everyone being in the country. There is just one
more equilibrium in which the two returns have to be equalized, which means that n = n1

and the the rest, which is n − n1, live in the country. Draw a diagram to show that this is
unstable.

If N > n2 then again there are three equilibria. One is everyone in the country and one is
unstable (as usual). The third involves n2 people in the city and N − n2 in the country.

(b) Now suppose that new cities can come up, each yielding exactly the same payoff function
as above. Focus on the equilibrium in each case with the maximum possible city dwellers,
and explain how this equilibrium will move with the overall population N .

If there is room for several potential cities the additional cities come into play only in the
case that n > n2. There are now several equilibria. Let’s focus on the one with the most
city dwellers. Let M be the largest integer such that N ≥ Mn2. If the difference N −Mn2

is smaller than n1, then there are M cities that will be active in (the maximum-city-dweller)
equilibrium, each housing n2 people and the the rest living in the country. If the difference
N −Mn2 is larger than n1, then there are equilibria with M + 1 cities, and no one living in
the country.

(6) Let us suppose that people are arrayed in order of decreasing honesty, and that the
“honesty payoff” to person i, where i is an index between 0 and 1, is given by h(i) = 1− ai,
where i runs from 0 to 1, and a is a positive parameter. This is the direct payoff person i

1We left out the knife-edge case in which N just happens to be equal to n1, in which case there are only
two equilibria, either n = 0 (stable) and n = n1, which is unstable.
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gets from being honest in a particulate situation. But she also gets a cheating payoff equal
to bn, where n is the fraction of individuals being dishonest in that situation, and b > 0 is
a positive parameter. Each person has just two choices, to be honest or dishonest, receiving
the honesty payoff if she takes the honest action and the cheating payoff if she takes the
dishonest action.

Describe the equilibria of this model for different values of the parameters a and b.

Note that in any equilibrium, by the way we have ordered people in order of decreasing
honesty, it must be that if i is honest, so is j, where j < i in the index. Now suppose that
the fraction of dishonest people is n; that means from the above argument that 1− n is the
index of the “last” honest person. The honesty payoff of that threshold person is 1−a(1−n),
and her cheating payoff is bn.

Can we get an equilibrium in which everyone is honest? That is possible if n = 0, which
requires 1− a(1− n) ≥ bn evaluated at n = 0, or a ≤ 1. (Interpret this.)

Can we get an equilibrium in which everyone is dishonest? That is possible if n = 1, which
requires 1− a(1− n) ≤ bn evaluated at n = 1, or b ≥ 1. (Interpret this.)

Now you can write down conditions for unique and multiple equilibrium. Remember that
there could also be an interior equilibrium, in which 0 < n∗ < 1. That requires the condition
1− a(1− n∗) = bn∗, or n∗ = (1− a)/(b− a). Note that this can only exist if both a < 1 and
b > 1 (why?). Argue that this is unstable for the usual reasons.

(7) Suppose that people’s attitudes can take three possible positions: L, M , and R, where
you can think of L as leftist, R as rightist, and M as middle-of-the-road. Consider a society
in which it is known that a fraction α are M types, and the remaining fraction 1 − α are
divided equally between L and R, but no individual is known to be L, M , or R at first sight.
Suppose that each individual gets satisfaction S from expressing his or her own true views,
but feels a loss (“social disapproval”) in not conforming to a middle-of-the-road position.
The amount of the loss depends on the fraction α of M types: suppose that it equals the
amount α/(1− α).

(a) Show that there is a threshold value of α such that everybody in society will express
their own view if α is less than the threshold, but will all express M -views if α exceeds the
threshold.

The gain from being your own self is S. If you are an L-type or an R-type, you will also feel
a loss equal to α

1−α . Therefore the net gain from being your own type L or R is S − α
1−α .

This is negative if α > S
1+S . Above this threshold, everybody will say that they are type M ,

and below that everyone will freely report their own view.

(b) What happens if we change the specification somewhat to say that the “social disapproval
loss” equals β/(1− β), where β is the expected fraction of people who choose to express M
views (and not necessarily the true fraction of M types)?
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In this case, there are two possibilities. First, assume that α > S
1+S , the threshold derived

in part (a). Note that a fraction α (the true M -types) will always say that they are type M ,
because they have nothing to gain by stating any other position. But by part (a), the other
types will hide their identity, which raises the value of β (the announced M-types) above
the value of α. This process can only stop when everybody announces that they are type
M . On the other hand, if α ≤ S

1+S , there is an equilibrium in which everybody announces
their true type, and so β = α. You can check that nobody will want to deviate from their
announcements. But at the same time, there is another conformity equilibrium in which
everybody announces that they are type M (and in which β takes on the value of one).

(c) Indicate how you would extend the analysis to a case in which there are potential con-
formist urges attached to each of the views L, M , and R, and not just M .

If there are potential conformist urges attached to each of the views L, M and R (and not just
M), then other equilibria appear. There may be conformist equilibria in which everybody
announces L, or in which everybody announces R (try and provide a simple algebraic example
of this).


