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Development Economics

Answers to Problem Set 2

(1) This question involves detailed numerical calculations and will not be a typical exam
question. But it will help you understand the basic growth model.

The economy of Ping Pong produces its output using capital and labor. The labor force is
growing at 2% per year. At the same time, there is “labor-augmenting” technical progress
at the rate of 3% per year, so that each unit of labor is becoming more productive.

(a) How fast is the effective labor force growing?

Effective labor grows at the rate of labor force growth plus the rate of labor-augmenting
technical progress, so the answer is 5% per year. Well, it’s a bit different as we discussed in
class: effective labor grows by a factor of (1+n)(1+π), which equals 1+n+π+nπ, and we
neglect the nπ term which is relatively small. To illustrate: if n = 0.02 and π = 0.03, then
1 + n + π + nπ is 1.0505, which implies a growth rate of 5.06%. The 0.06% part is tiny, so
the acceptable answer is 5%, but the real answer is 5.06%.

(b) Now let’s look at production possibilities in Ping Pong. We are going to plot a graph

with capital per unit of effective labor (k̂) on the horizontal axis and output per effective
unit of labor (ŷ) on the vertical axis. Here is a description of the “production function” that

relates ŷ to k̂. As long as k̂ is between 0 and 3, output (ŷ) is given by ŷ = (1/2)k̂. After k̂

crosses the level 3, an additional unit of k̂ only yields one-seventh additional units of ŷ. This
happens until k̂ reaches 10. After that, each additional unit of k̂ produces only one-tenth
additional units of ŷ. (To draw this graph, you may want to measure the ŷ axis in larger

units than the k̂ axis; otherwise, the graph is going to look way too flat.) On a graph, plot

this production function. What are the capital–output ratios at k̂ = 2, 6, and 12? Note that
the answers you get in the case k̂ = 6 and 12 are different from what happens at the margin
(when you increase capital by one unit). Think about why this is happening.

Note: in class, we talked about the output-capital ratio rather than the capital-output ratio.
These are just flip sides of the same coin! If θ is the output-capital ratio, the capital-output
ratio is nothing but its reciprocal, which is 1/θ.

I am going to skip the graph which you should be able to do without a problem. Let’s
calculate capital-output ratios. At k̂ = 2, total output is ŷ = 1. So the ratio of capital to
output is 2. (And the output-capital ratio is just its reciprocal: 1/2; you should be totally

comfortable with either concept.) At k̂ = 6, we have to figure out what total output is. The
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first three units of k̂ produce y = 1.5 units of output. The next three produce an additional
3/7 units of output. So output per effective labor when k̂ = 6 is (3/2) + (3/7) = 27/14. The
capital-output ratio is, therefore, 6×(14/27), which is approximately 3. True to the discussion

in class, the capital-output ratio rises with k̂, and correspondingly the output-capital ratio
falls with k̂.

Similarly, you can work out the capital-output ratio for k = 12. Omitted here, as the way of
calculating it is exactly the same.

Note that these answers are different from the “marginal” capital-output ratio in each of the
relevant regions of the production function. For instance, at k̂ = 6, each additional unit of
output is requiring 7 units of capital, not 3. The average ratio is smaller than the marginal
ratio, because the former includes capital applied in the earlier phase of the production
function, where its marginal product is higher. The difference between marginal and average
capital output ratios comes from diminishing returns to physical capital in production.

(c) Now let us suppose that Ping Pong saves 20% of its output and that the capital stock

is perfectly durable and does not depreciate from year to year. If you are told what k̂(t) is,

describe precisely how you would calculate k̂(t + 1). In your formula, note two things: (i)
convert all percentages to fractions (e.g., 3% = 0.03) before inserting them into the formula

and (ii) remember that the capital–output ratio depends on what the going value k̂(t) is, so
that you may want to use the symbol 1/θ for the capital-output ratio, to be replaced by the

appropriate number once you know the value of k̂(t) (as in the next question).

Let’s go through the derivation of the Solow model. New capital is simply old capital plus
extra investment. But savings equals investment. So capital in period t+1 is related to what
happens in period t by the equation

K(t+ 1) = K(t) + sY (t)

where s is the savings rate, and Y (t) is income in period t. (There is no depreciation.)

Now, we divide by the effective labor force e(t)L(t) at time t. Remember that k̂(t) =
K(t)/e(t)L(t) and ŷ(t) = Y (t)/e(t)L(t) for all t. So we get

K(t+ 1)

e(t)L(t)
= k̂(t) + sŷ(t)

(This is all a rehash of stuff done in the lectures.) Now we play with the left-hand side:
[K(t + 1)/e(t)L(t)] = [K(t)/e(t + 1)L(t + 1)] × [e(t + 1)L(t + 1)/e(t)L(t)], which is just

k̂(t+ 1)× 1.05 (using part (a)). Substitute this in the equation above to get:

(1.05)k̂(t+ 1) = k̂(t) + sŷ(t).

To finish the formula, we know that k̂(t) and ŷ(t) are linked by whatever the capital-output
ratio is at date t. This ratio is not a constant but varies as described in part (b) and in class.

If we use the notation θ(t) for the output-capital ratio as we did in class, then k̂(t) = ŷ(t)/θ(t).
Using this in the formula above, and recalling that s = 1/5, we get

(1) (1.05)k̂(t+ 1) = k̂(t)

[
1 +

θ(t)

5

]
.
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Now we have a formula that can precisely compute k(t+ 1), given any value of k(t).

(d) Now, using a calculator if you need to and starting from the point k̂(t) = 3 at time t,

calculate the value of k̂(t + 1). Likewise do so if k̂(t) = 10. From these answers, can you

guess in what range the long-run value of k̂ in Ping Pong must lie?

At k̂(t) = 3, the value of ŷ(t) is 3/2, which means that θ at that point is 1/2 So, using our

trusty formula (1), we see that (1.05)k̂(t+ 1) = 3[1 + (1/10)], which will give you a value of

k̂(t+ 1) that exceeds 3, what we started with in the previous period. The idea, as discussed
in class, is that capital is more productive at the margin when its level is low, so that the
economy tends to accumulate capital more quickly than effective labor, raising k̂.

At k̂(t) = 10, figure the value of θ(t): you will see that it is 1/4. Using our formula (1) again,

(1.05)k(t+1) = 10[1 + (1/20)], which means that k̂(t+1) is also 10. By a stroke of luck, we

have found the steady-state ratio k̂∗.

You should appreciate the point that this is just pure luck. What would have happened had
you started with k̂(t) > 10?

(e) Calculate the long-run value of k̂ in Ping Pong. (Hint: You can do this by playing with
different values or, more quickly, by setting up an equation that tells you how to find this
value.)

Let’s try to set up an equation. At the steady state value of k̂∗, we will have k̂(t + 1) =

k̂(t) = k̂∗. Use this in the formula: you see that k̂∗ drops out (it appears on both sides of the
equation), so that 1.05 = [1+(θ∗/5)], where θ∗ is the output-capital ratio at the steady state.
Solve this equation to see again that θ∗ = 1/4. Unlike the previous problem, this answer is

not luck but comes from the insight of using k̂(t) = k̂(t+ 1) in our formula.

(2) Let’s study the production function Y = AKaLb in more detail.

(a) We say that a production function satisfies increasing returns to scale if a proportional
increase in all inputs raises output by more than that proportion. Prove carefully that this
happens if and only if a+ b > 1.

A production function satisfies increasing returns to scale if a proportional increase in all
inputs raises output by less than that proportion. In algebra, we have that for every λ > 1,

F (λK, λL) > λF (K,L).

Applying this inequality to the Cobb-Douglas form it means that

A(λK)a(λL)b > λAKaLb

for λ > 1. But the above holds if and only if

λa+b > λ

for λ > 1, which happens if and only if a+ b > 1.
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(b) Using basic calculus, find a formula for the marginal product of labor. Show that if there
is constant returns to scale (so b = 1 − a), the marginal product depends only on the ratio
of capital to labor. But this is no longer true if a+ b ̸= 1. Explain why intuitively.

Using derivatives, we see that the marginal product of labor is given by

MPL = AbKaLb−1.

When a+ b = 1, this reduces to

MPL = Abka,

where k = K/L. Notice that MPL only depends on the ratio of capital to labor in this case.
Intuitively, when we scale up capital and labor, there are two effects. One is that labor goes
up, and by diminishing returns to an input, this tends to lower the marginal product of labor.
But the other effect is that capital goes up and that tends to increase the marginal product
of labor. With constant returns to scale the two effects just cancel out.

(c) Notice that if the production function has constant returns to scale, it automatically
generates diminishing returns to each input. Show this with algebra but then also try to
explain it intuitively.

Under constant returns to scale, we have a + b = 1. Because each input is productive (it is
an input after all!), we know that each of a and b is strictly positive. But that must also
mean — because a + b = 1 — that each of them must also be strictly less than 1. Voilà,
diminishing returns to inputs.

Intuitively, constant returns to scale means that as you scale up all inputs in proportion,
output goes up by exactly that proportion. But because each input enhances the marginal
product of the other inputs, it follows that if we just scale up a subset of the inputs in some
proportion, output must rise by less than that proportion, which gives us diminishing returns
to every subset of inputs.

(3) (This could be part of a typical exam question.) Suppose that the country of Xanadu
saves 20% of its income and has a constant capital–output ratio of 4. Assume capital does
not depreciate.

(a) Using the Harrod–Domar model, calculate the rate of growth of total GNP in Xanadu.

Neglecting depreciation as we’ve been asked to do, the Harrod-Domar model leads us to the
equation: g = sθ, where g is the aggregate growth rate, s is the rate of savings, and θ is the
output-capital ratio. Here s = 1/5 and θ = 1/4 (because the capital-output ratio is 4). So
g = 1/20, or 5% per year.

(b) If population growth were 3% per year and Xanadu wanted to achieve a growth rate per
capita of 4% per year, what would its savings rate have to be to get to this growth rate?

We know that the per-capita growth rate is the aggregate growth rate minus the population
growth rate. Therefore, if the required per-capita growth rate is 4% and the population
growth rate is 3%, the required aggregate growth rate is 7% per year, or 7/100. Using the
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Harrod-Domar equation, we see, therefore, that the required rate of savings is g/θ, which in
this case is (7/100)× 4, or 28% of income.

(c) Now go back to the case where the savings rate is 20% and the capital–output ratio is 4.
Imagine, now, that the economy of Xanadu suffers violent labor strikes every year, so that
whatever the capital stock is in any given year, a quarter of it goes unused because of these
labor disputes. If population growth is 2% per year, calculate the rate of per capita income
growth in Xanadu under this new scenario.

The trick in this problem is to calculate what is, effectively, the capital-output ratio in Xanadu
because of the labor problems. Let’s use a symbol for the capital output ratio; say γ = 1/θ.
Then γ is the amount of capital you need to produce a single unit of output. With the strikes,
you effectively end up using more than that. How much more? Well, it must be γ × (4/3).
After all, if you take away a quarter of this, you will get back exactly γ. So the effective
capital-output ratio is now 4 × (4/3) = 16/3. Using this in the Harrod-Domar equation
with a rate of savings at 1/5, we see that g = 3/80, which is 3.75% per year. Subtract the
population growth rate, to get per-capita growth at 1.75% per year.

(4) (Again, a possible exam question, this time on the Solow model.) A country has a
production function which depends on capital and labor, and it is given by

Y = 100K1/3L2/3.

(a) Describe per-capita production y as a function of the per-capita capital stock k.

Divide both sides of the production function by L; then:

Y

L
=

100K1/3L2/3

L
= 100

(
K

L

)1/3

,

so that, remembering that y = Y/L and k = K/L, we have:

y = 100k1/3.

(b) Assume that capital does not depreciate at all, and that there is no technical progress.
Let the savings rate be given by s and the rate of growth of population (=labor) be given by
n. Show that steady state output per-capita is given by

(2) y∗ = 1000
√
s/n,

describing precisely all the steps that lead to this conclusion.

Let us recall the Solow equation for capital accumulation, which is:

K(t+ 1) = K(t) + sY (t),

where we use the assumption that there is no depreciation. Dividing through by L(t) on
both sides:

K(t+ 1)

L(t)
=

K(t)

L(t)
+ s

Y (t)

L(t)
= k(t) + sy(t),

and because K(t+ 1)/L(t) = [L(t+ 1)/L(t)][K(t+ 1)/L(t+ 1)] = (1 + n)k(t+ 1), we get

(1 + n)k(t+ 1) = k(t) + sy(t) = k(t) + 100sk(t)1/3,
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where the last equality uses part (a). In steady state k∗, we therefore have

(1 + n)k∗ = k∗ + 100sk∗1/3,

and solving this system for its positive solution, we have:

k∗ = 1003/2
( s

n

)3/2
.

It follows that

y∗ = 100k∗1/3 = 100

[
1003/2

( s

n

)3/2
]1/3

= 1003/2
( s

n

)1/2
= 1000

√
s/n.

(c) Provide intuitive economic reasoning to explain why equal percentage increases in savings
rates and population growth rates appear to nullify each other in equation (2), in the sense
of leaving per-capita income unchanged.

In the equation derived in part (b), notice how s and n appear to cancel each other out as
far as their joint effect on steady state incomes are concerned. An increase in savings rate
will increase the per-capita capital stock, both directly by adding to tomorrow’s capital stock
and indirectly, by adding to production that permits a further boost to the per-capita capital
stock. But population growth does exactly the opposite: it reduces the per-capita capital
stock both directly by first diluting the per-capita stock tomorrow (it is spread over more
people) and indirectly by reducing per-capita production. These two effects run in opposite
directions.

(5) In class, we discussed how the Solow model fails to adequately account for per-capita
income differences across countries. There is a related problem: the model also appears to
predict too high a discrepancy between the rates of return to capital across a developed and
developing country. To appreciate this problem, suppose that the production function in
both countries is given by

Y = KaL1−a.

(a) Show, using calculus and a little algebra, that the rate of return r to capital is given by

r = aka−1 = ay(a−1)/a,

where k and y have the usual meanings.

There are two inputs, K and L, and a Cobb-Douglas production function — the same one
— for two countries, given by

Y = KaL1−a.

The return to capital is just its marginal product, which is given — taking derivatives — by

r = aKa−1L1−a = aka−1.

But we know that y = ka, so it follows that

y(a−1)/a = ka−1.

Using this in the first equation gives us the desired answer.
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(b) Show that if one country is 15 times richer than another and a = 0.3, then the poorer
country will have a rate of return to capital over 200 times that of the richer country.

Just plug in the values and use the formula. You will get in fact that the poorer country has
over 500 times the rate of return compared to the richer country, If you use the approximation
a = 1/3, you will get a ratio of 225.

(c) Suggest ways of resolving this puzzle. That is, what forces could still allow the 15-times
gap in incomes and yet give you a smaller gap between the two rates of return on physical
capital? Question (8) at the end is an optional question which is not required for this problem
set, but it bears on this discussion and I encourage you to try.

There are various discrepancies that can resolve at least part of the difference:

(i) There is human capital, which is in low supply in developing countries and will tend to
drag down the rate of return to physical capital.

(ii) The rate of return in developing countries also includes the risk factors associated with
political change or revolutions, in which case capital could get expropriated. This fear factor
will lower the rate of return to capital in developing countries.

(iii) There could be technological differences between the two countries, so that we cannot
use the same production function for both.

(6) (These could be typical true-false questions in exam.) Discuss whether the following
statements are true or false. In each case, just saying “true” or “false” is not enough.
Provide an argument for truth, or simply a counterexample if you think it’s false.

(a) The Harrod–Domar model states that a country’s per capita growth rate depends on its
rate of savings, whereas the Solow model states that it does not.

True. Here write down the Harrod-Domar equation. And then go on to mention that in the
Solow model, long-run growth rate is determined simply by the exogenous rate of technical
progress. The savings rate only determines long-run capital stocks per-capita and the level
of per-capita output, not its rate of growth.

(b) According to the Harrod–Domar model, if the capital–output ratio in a country is high,
that country will grow faster.

False. Simply write down the Harrod-Domar equation and argue that an increase in the
capital-output ratio must lower the rate of growth. (Of course, an increase in the output-
capital ratio must increase the rate of growth.)

(c) To understand if there is convergence in the world economy, we must study countries that
are currently rich.

False. Studying countries that are currently rich introduces a bias towards convergence,
as you are simply selecting ex post countries that were successful and so similar. You can
mention Baumol’s study as an example of this kind of mistake.
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(d) Middle-income countries are more likely to change their relative position in world rankings
of GNP than poor or rich countries.

True. Our investigation of the mobility matrix across countries shows that both very poor
and very rich countries are unlikely to change world rankings all that much. In contrast,
countries that were middle-income in 1960 have shown remarkable changes. A large fraction
of them have become dramatically richer, while a large fraction have also become dramatically
poorer.

(e) In the Solow model, a change in the population growth rate has no effect on the long-run
rate of per capita growth.

True. In the Solow model, population growth only changes the level ofn long-run per-capita
income. Here you may draw a quick diagram that describes the steady state in the Solow
model and show what happens as population growth increases. Then point out that in the
long-run, the rate of growth in the Solow model is just the rate of technical progress.

(f) In the Solow model, output per head goes down as capital per head increases, because of
diminishing returns.

False. Draw the production function relating output per capita to capital per head. Of course
output per capita increases as capital per capita increases. The point is that it does so at a
diminishing rate, but it increases nevertheless.

(g) A Cobb-Douglas production function that has increasing returns to scale must also have
increasing returns to at least one of its inputs.

False. Example: Y = AK3/4L3/4. Explain that this has increasing returns to scale (why?)
but diminishing returns to each input (why?).

(h) A country which has been growing steadily at 10% per year and now has a per-capita
income of $100,000 would have a per-capita income of $12,500 approximately 22 years ago.

True. Let income be y 21 years ago. Because the rate of growth is a steady 10% per year,
income would double in 7 years, then double again in another 7, and once more in another
7. Then income today is given by

8y = 100, 000

which gives y = 12, 500.

Optional Practice Problems (do not need to be handed in)

(7) This is a review question and all it does is encourage you to go over the class notes and
the text material.

A. Review of Solow. Suppose that the production function is given by Y (t) = AK(t)aL(t)1−a,
where A is a fixed technological parameter. There is no technical change. Assume a fixed
rate of depreciation δ and a constant rate of growth of population n. Explicitly solve for the
steady-state value of the per capita capital stock and per capita income. How do these values
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change in response to a rise in (a) the technological parameter A, (b) the rate of saving s,
(c) a, (d) δ, the depreciation rate, and (e) the population growth rate n?

This is just a review of material in class that will help you understand how the steady state
in the Solow model is described. We have the equation

Y (t) = AK(t)aL(t)1−a

describing how total output is produced with capital and labor. In the first step, we transform
this into a per-capita magnitude by dividing through by the labor force L (there is no technical
progress here so that labor is just the same as effective labor). If we define y = Y

L and k = K
L ,

we see that

y(t) = Ak(t)a.

Therefore the equation describing the Solow model is

(3) (1 + n)k(t+ 1) = (1− δ)k(t) + sAk(t)a.

In the steady state k∗, k(t) = k(t+ 1) = k∗. Consequently,

(4) (1 + n)k∗ = (1− δ)k∗ + sAk∗a.

Now we solve this equation (4) to figure out what the value of k∗ must be:

(n+ δ)k∗1−a = sA,

or that

(5) k∗ =

[
sA

n+ δ

]1/(1−a)

.

Now using equation (5), you should be able to easily tell the direction in which k∗ moves, in
response to all the changes asked about in the question.

B. Review of Harrod-Domar. Recall the basic accumulation equation

(1 + n)k(t+ 1) = sy(t) + (1− δ)k(t)

In this problem we’re interested in looking at a case in which there is no diminishing returns
in production, so that

y = Ak.

(a) Draw a diagram to convince yourself that in this case, there is no positive limit capital
stock as in the Solow model: either k grows without bound or it shrinks all the way down to
zero.

The idea here is that the production function is linear so when you draw the Solow diagram
that we did in class, we have two flat lines. To get to this point, look at equation (3) in Part
A, and divide both sides by first k(t) and then 1 + n to get

(6)
k(t+ 1)

k(t)
=

(1− δ) + sAk(t)a−1

1 + n
.

In your review, notice that the term Ak(t)a−1 is just the output-capital ratio, which we
denoted in class by θ. Notice how whenever a < 1, so that capital and input are both crucial
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to production, this object decreases as k(t) increases, and try and understand fully why that
is the case.

With that firmly in mind, now take a to 1 to arrive at the Harrod-Domar model. Notice how
the output-capital ratio morphs into just A, so that equation (6) changes to

(7)
k(t+ 1)

k(t)
=

(1− δ) + sA

1 + n
.

From this equation (7), we can see that If (1−δ)+sA line lies above 1+n, per-capita capital
(and therefore per-capita output) will grow forever. If it lies below, then output will shrink
over time to zero.

(b) Define g(t) to be the growth rate of per-capita capital; that is

g(t) = [k(t+ 1)/k(t)]− 1.

Prove that this is also the growth rate of per-capita output at date t.

y = Ak at every date, so in particular:

y(t) = Ak(t),

and
y(t+ 1) = Ak(t+ 1).

Dividing both sides of the second equation by the first, we see that

y(t+ 1)/y(t) = k(t+ 1)/k(t),

which is what we needed to prove.

(c) Show that g(t) is the same value at every date, and that

sA = (1 + n)(1 + g)− (1− δ) ≃ n+ g + δ.

This is the Harrod-Domar equation. See text for more details.

ust use equation (7) to do this:

k(t+ 1)

k(t)
=

(1− δ) + sA

1 + n
.

The left hand side is just “the growth rate of capital plus one,” which is also “the growth
rate of output plus one” in the Harrod-Domar model, as we have seen in part (b) of this
problem. Calling that growth rate g, we have

1 + g =
(1− δ) + sA

1 + n
,

or
sA = (1 + g)(1 + n)− (1− δ) = n+ g + δ,

because ng is very small relative to the other variables (recall why).

(d) Note that in the Solow model, the savings rate only affects the limit value of per-capita
output, but does not affect the rate of growth of that output in the long run. But in the
Harrod-Domar variant, it does affect the growth rate. Discuss why.
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Here the savings rate has a persistent effect on growth rates. The reason is that the Harrod
Domar model does not have any diminishing returns, so that a higher rate of savings feeds
into a higher rate of economic growth. In contrast, in the Solow model, that effect gets
dampened by diminishing returns and ultimately, even though the new steady-state level of
capital and income per capita are higher, there is no effect on the rate of growth.

In the Harrod-Domar model, the value A is known as the output-capital ratio. It is the amount
of flow output generated by one fixed unit of the capital stock. Its reciprocal, 1/A, is more
familiarly known as the capital-output ratio. The best way to think about the Harrod–Domar
equations is to attach some numbers to them, as we did in Problem 3.

(8) Think of the three-input model with unskilled and skilled labor (as well as physical
capital) mentioned in class: Y (t) = AK(t)aH(t)bU(t)1−a−b, where H is skilled labor and U
is unskilled labor. One useful feature of this model is that it simultaneously explains how
rates of return to physical capital as well as the wage rate for unskilled labor might be low
for developing countries. But there is a problem with this argument.

(a) Using the Cobb-Douglas with three inputs instead of two, show that such a model predicts
that the rate of payment to human capital must be higher in developing countries.

(b) Adapt the Cobb-Douglas specification in part (a) to allow for differences in technology
across developed and developing countries. Now it is possible to generate situations in which
the return to every input is lower in developing countries. Which input is likely to have the
lowest return (in a relative sense)?

To gain some intuition for this problem, go back to the answer for problem (5), and recall
the rate of return to capital:

r = aka−1.

By taking derivatives with respect to the labor input, we can figure out what the wage is:

w = (1− a)KaL−a = ka.

Notice how k influences the rate of return to capital negatively. That makes sense by dimin-
ishing returns, and mathematically the way we see it is to remember that a− 1 < 0, so r is
related negatively to k. But in the wage equation, it is obvious that w is related positively
to k (the more capital there is to work with, the higher is the productivity of labor). This
has an interesting implication:

If two countries have the same overall production function using just capital and labor, and
one country has a higher wage rate, then it has a lower rate of return to physical capital.

This is what we worked with in question (5): in fact we saw that the richer country has a
much lower return to capital. One way to try and fix that is given by this problem; also
see our three-input model in the text and in class, which is related. Suppose there are three
inputs, K, H (human capital or skilled labor), and U (unskilled labor). Then it is possible
to “explain” why a poor country has a lower unskilled wage and a lower rate of return to
physical capital, but the explanation comes at a price: the return to skilled labor must be
higher in the poor country, if the two countries have the same production function. This
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counterfactual prediction is a way of trying to “theoretically prove” that the two countries
must have different production functions.

Now for the details. We have

Y = KaHbU1−a−b

Let us use k to denote K/U and h to denote H/U , per-capita versions relative to unskilled
labor.

First let us calculate the rate of return to unskilled labor — call it wu for unskilled wage.
This is the derivative of the production function with respect to U , so that

(8) wu = (1− a− b)KaHbU−a−b = (1− a− b)kahb.

Likewise, the rate of return to physical capital — call it r — is given by

(9) r = aKa−1HbU1−a−b = aka−1hb.

And the rate of return to human capital — call it wh — is given by

(10) wh = bKaHb−1U1−a−b = bkahb−1.

Say that the index 1 stands for the developing country and 2 for the rich country. Because
we are trying to explain how both the wage and the return to physical capital could be lower
in country 1, we are imposing wu(1) < wu(2) and r(1) < r(2). This imposes restrictions on
how k and h can vary across the two countries. The wage inequality tells us (using (8)) that

(11) paqb > 1.

where p is the ratio of the rich country’s k to that of the poor country: that is, p = k2/k1,
and q is the ratio of the rich country’s h to that of the poor country: that is, q = h2/h1.
Likewise, the differences in the rate of return to physical capital tell us, using (9), that

(12) paqb > p.

Finally, suppose that the model also allows for the skilled wage to be lower in the poor country
(in fact, we want to prove the opposite but this is what is called a proof by contradiction):
then, by the same token, using (10), we have

(13) paqb > p.

In the rest of the argument, we prove that all three inequalities (11)—(13) cannot simulta-
neously hold, which will lead to a contradiction, and prove the desired result. First we show
that both p and q must be bigger than 1. Suppose not; say p ≤ 1. Then from (11), it must
be that q > 1. But (13) implies that pa > q1−b, which cannot be. So p > 1. By exactly the
same argument involving (11) and (12), we must conclude that q > 1.

Now we complete the proof by taking logs in equations (12) and (13). Doing this with (12),
we have that

(14) a ln p+ b ln q > ln p
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where we note that ln p and ln q are both strictly positive because p > 1 and q > 1 (just
shown). Similarly, taking logs in (13), we see that

(15) a ln p+ b ln q > ln q.

Can both these inequalities hold at the same time? They can’t, if both ln p and ln q are
positive, as they must be!Draw a diagram and convince yourself. If you have come this far,
you can do it. And you haven’t, don’t worry about it.


