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Examination 1, Fall 2023

(1) (30 points, 6 points per part, 5 parts) Are the following statements true or false? It
is not enough to just guess one or the other. You need to provide an argument for or against,
and only then will any credit be awarded.

[a] If a production function defined on three inputs (say physical capital, human capital and
unskilled labor) exhibits diminishing returns to each one of these three inputs, then it must
have decreasing returns to scale.

False. Example: Cobb Douglas on three inputs:

Y = AKaLbHc

will have diminishing returns to each input if 0 < a, b, c < 1 but could have constant or even
increasing returns to scale if a+b+c ≥ 1. This answer gives you full credit if you additionally
explain why a+ b+ c > 1 means you have increasing returns or why a+ b+ c = 1 means you
have constant returns.

[b] The Harrod-Domar model is capable of generating persistent growth in the per-capita
capital stock (and therefore in per-capita income), even without any technical progress.

True. In the Harrod-Domar model, we have the growth equation in per-capita form as

(1 + n)k(t+ 1) = (1− δ)k(t) + sAk(t)a

with a set equal to 1. (You can start this answer even “earlier” with the aggregate capital
stock and then dividing by population to get the equation above.) In this limit case, we have
the simpler form

(1 + n)k(t+ 1) = (1− δ)k(t) + sAk(t)

which tells us that
k(t+ 1)− k(t)

k(t)
=

sA− n− δ

1 + n

And of course, income growth occurs at the same rate as per-capita capital growth, as y and
k are linearly connected by y = Ak. That is,

y(t+ 1)− y(t)

y(t)
=

k(t+ 1)− k(t)

k(t)
.

[c] In the Solow model with technical change, per-capita growth could be higher than the
rate of technical progress, depending on the initial income a country starts from.

True. In the Solow model, it is only at the steady state that the economy grows per-capita
at the rate of technical progress. If the initial capital stock relative to effective labor is not
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at the steady state value k̂∗, then growth could be faster or even slower. The diagram below
illustrates this.
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The blue line indicates the path of per-capita income in steady state, growing at the constant
rate of technical progress. But nobody magically decreed that the economy has to start right
on that blue path. It could start at a point like C, for instance, in which case the trajectory
CD moves up faster than the steady state path AB. That faster movement has to translate
into a growth rate of per capita capital that’s higher than the steady state growth rate. (Of
course, the growth rate slows down as the steady state is approached.)

Indeed, the economy could even grow slower than steady state: imagine starting at a point
like C ′ and converging towards the steady state path along the trajectory C ′D′.

[d] A country which has been growing steadily at 2% per year and now has a per-capita
income of $60,000 would have a per-capita income of approximately $3,750, about 140 years
ago.

True. At a 2% rate of growth the doubling time is given by approximately 70/2, which is 35
years. If 140 years ago income was y, then it would double in 35 years, and then three more
times over the next 35+35+35 years. So its total income would be 24 = 16 times as large,
and so income today is given by

16y = 64, 000

which gives y = 4, 000.

[e] This is a possible mobility matrix across starting and ending relative income categories,
with every category populated by at least some countries at the ending stage, assuming that
all countries were equally divided at the starting stage.

1 2 3 4

1 80% 20% 0% 0%
2 0% 0% 65% 35%
3 0% 50% 50% 0%
4 0% 0% 0 100%

True. It is possible. First you should check that this is indeed a valid mobility matrix, for
which you must check that all the rows sum to 100%. They do. Now notice that if you start
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with countries in each initial category, then every category at the end of the process will have
some countries in it. For instance, 80% of the countries in Category 1 remain in Category
2. 50% of the countries from Category 3 move to Category 2. 65% of the countries from
Category 2 move to Category 3. And finally, 100% of the countries from Category 4 remain
in Category 4.

(2) (17 points) The town of Maskdown has been invaded by a nasty viral disease. The
chances of catching it depends on whether you are wearing a mask or not. The probability of
being infected is 80% (or 4/5) if you don’t wear a mask and 40% (or 2/5) if you do. Getting
the disease is costly to you: denote that cost by C > 0.

But there are other costs as well — because there’s an ongoing debate in Maskdown about
wearing masks. Some will yell at you if do, and others will shame you if you don’t. Let’s
model these “shame costs.” At any point of time, say a share n wears a mask, while 1 − n
don’t. The shame cost of not wearing a mask increases in the share of people that are wearing
a mask, and the cost is given by 200n. There is another “shame cost” of wearing a mask
that increases in the share of people that are not wearing a mask, and the cost is given by
150(1 − n). Alas, no matter which action you take, you are going to incur one cost or the
other. That’s just life in Maskdown, as in many real-world cities . . .

Each person is interested in taking the action that minimizes her overall expected cost — that
from getting the disease plus any shame cost that she incurs from her action.

(i) [4 points] Show that no matter how small C is, it is always an equilibrium for people in
Maskdown to all wear masks.

Suppose that a share n is expected to wear a mask. Then if you wear a mask, your expected
cost is

(2C/5) + 150(1− n)

which is the expected disease cost + the shame cost coming from those who are not wearing.
Likewise, if you don’t wear a mask, your expected cost is

(4C/5) + 200n,

and you take the action with the lower cost. If n is expected to be 1 (everyone wearing), the
cost of the former is 2C/5 while the cost of the latter is (4C/5) + 200, and clearly everyone
will then want to wear a mask. It follows that n = 1, or ubiquitous mask-wearing, is always
an equilibrium.

(ii) [5 points] For what values of C are there also equilibria in which no one wears masks?

Similarly, try out the above expressions for the case in which everyone expects no one to
wear a mask; that is, n = 0. Then the cost of the former option is (2C/5) + 150 while the
cost of the latter option is 4C/5. For n = 0 to be an equilibrium, the latter option must have
a lower cost; that is, we need

4C/5 ≤ (2C/5) + 150, or C ≤ 375.

That is, it is also an equilibrium for no one to wear a mask provided the cost of the disease
is not too high.
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(iii) [4 points] In the second case, describe the “unstable equilibrium” in which some fraction
of the population (which I want you to calculate) wear masks, and explain why it is unstable.

In the second case, we have both n = 0 and n = 1 as equilibria. There is a third equilibrium
n∗ which is unstable, given by the value of n for which the two costs are exactly equal:

(2C/5) + 150(1− n∗) = (4C/5) + 200n∗, or n∗ =
150− (2C/5)

350
.

This is perfectly well-defined (because C ≤ 375). If n goes above this threshold n∗, the system
drifts off to the all-mask equilibrium! If n lies below this threshold, it drifts to the no-mask
equilibrium. Note: C might exactly equal 375 in which case the unstable equilibrium coincides
with the no-mask equilibrium, otherwise n∗ lies strictly between 0 and 1. The diagram below
tells you why n∗ is unstable.

Population share with masks

Cost of either option

n* 1

(2C/5) + 150

4C/5

2C/5

(4C/5) + 200

Total cost of mask-wearing

Total cost of not wearing masks

(iv) [4 points] Now suppose that in addition to all the costs described above, there is a “loss
of personal freedom” cost to wearing a mask; call it F . Find a condition on C and F for
which universal mask-wearing is not an equilibrium, in contrast to (i).

Just redo part 1 with the freedom cost factored in. Suppose that a share n is expected to
wear a mask. Then if you wear a mask, your expected cost is

(2C/5) + 150(1− n) + F

which is the expected disease cost + the shame cost + the freedom cost. If you don’t wear
a mask, your expected cost is

(4C/5) + 200n,

and again, you take the action with the lower cost. If n is expected to be 1 (everyone wearing),
the cost of the former is (2C/5) + F while the cost of the latter is (4C/5) + 100. This will
fail to be an equilibrium if the former cost is larger than the latter; that is, if

(2C/5) + F > (4C/5) + 200, or F > (2C/5) + 200.

The above condition will knock out universal mask-wearing as an equilibrium.

(3) (14 points) The country of Rápido has a production function which depends on capital
and labor, and at any date t, it is given by

Y = 9K1/3[e(t)L]2/3.
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where e(t) = (1+ π)t is the exogenous productivity of labor at time t, growing at a constant
rate π.

(a) [4 points] Find a formula for per-effective-capita production ŷ as a function of the per-

effective-capita capital stock k̂, and explain the steps to get there.

Divide both sides of the production function by effective labor e(t)L; then:

Y

e(t)L
=

9K1/3[e(t)L]2/3

e(t)L
= 9

[
K

e(t)L

]1/3
,

so that, defining per-effective-capita magnitudes by ŷ = Y/e(t)L and k̂ = K/e(t)L, we have:

ŷ = 9k̂1/3.

(b) [5 points] In Rápido, capital has depreciation rate δ, population growth n, and savings
rate s. Show that steady state path of output per-capita is given by

y∗(t) = 27

(
s

δ + π + n

)1/2

(1 + π)t,

describing precisely all the steps that lead to this conclusion.

Let us recall the Solow equation for capital accumulation, which is:

K(t+ 1) = (1− δ)K(t) + sY (t),

where we use the assumption that there is no depreciation. Dividing through by e(t)L on
both sides:

K(t+ 1)

e(t)L
= (1− δ)

K(t)

e(t)L
+ s

Y (t)

e(t)L
= (1− δ)k̂(t) + sŷ(t),

and because K(t+ 1)/e(t)L = [e(t+ 1)/e(t)][K(t+ 1)/e(t+ 1)] = (1 + π)k̂(t+ 1), we get

(1 + π)(1 + n)k̂(t+ 1) = (1− δ)k̂(t) + sŷ(t) = (1− δ)k̂(t) + 9sk̂(t)1/3,

where the last equality uses part (a). In steady state k̂∗, we therefore have

(1 + π)(1 + n)k̂∗ = (1− δ)k̂∗ + 9sk̂∗1/3,

and solving this system for its positive solution, we have:

k̂∗ ≃ 93/2
(

s

δ + π + n

)3/2

,

where at this stage we use the approximation that (1+π)(1+n) ≃ 1+π+n. It follows that

ŷ∗ = 9k̂∗1/3 = 9

[
93/2

(
s

δ + π + n

)3/2
]1/3

= 93/2
(

s

δ + π + n

)1/2

= 27

(
s

δ + π + n

)1/2

,

and opening up ŷ to trace out per-capita income y∗, we see that y∗(t) = ŷ(t)(1+π)t, so that

y∗(t) = 27

(
s

δ + π + n

)1/2

(1 + π)t,

which establishes the equation we want.
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(c) [5 points] Now set technical change and depreciation both equal to zero in Rápido. Show
that the coefficient on log savings rate is equal in magnitude to, but has the opposite sign of,
the coefficient on log population growth, in any regression of steady state per-capita output
on these parameters. Discuss this intuitively.

With technical change and depreciation both set to zero, steady state output is given by

y∗ = 27
( s

n

)1/2
.

Take logs to see that

ln y∗ = ln 27 +
1

2
ln s− 1

2
lnn.

So the predicted regression coefficients on ln s and lnn are equal in magnitude, but opposite
in sign.

There is good reason for this. An increase in the fraction of savings out of national in come
will raise capital accumulation , thereby moving up the Solow steady state. An increase in
the population growth rate lowers capital accumulation per capita. The two effects tend to
cancel out when there is no technical progress or depreciation. An increase in the population
growth rate by 1% can be exactly nullified by the same percentage increase in the savings rate,
so that the resulting growth in capital makes up exactly for the resulting higher population
numbers.


