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ABSTRACT

An economy with a finite number of agents and a finite number of states
is considered. An exogenous institutional rule prescribes what moves from
one state to another are feasible to each coalition. At each time an agent is
called to act with some exogenous probability, and he chooses a coalition,
a feasible new state to move the economy to, and side-payments between
the agents in the coalition. The setup can be applied to various dynamic
processes of social and economic interactions such as legislative bargaining,
coalition formation or exchange economies. Whenever agents are unable to
write long-term contracts, but agents are otherwise unconstrained both in
their ability to write arbitrary spot contracts and in their ability to collude,
there can be long-run inefficiencies (with cycles or inefficient steady states).
However, when agents are sufficiently patient, the initial state from which
the process starts plays no role in the long-run. Moreover, when there exists
an efficient state that is negative-externality-free (in the sense that a move
away from that state does not hurt the agents whose consent is not required
for the move), then the system must converge to this efficient state in the
long-run. It is thus more important to design institutions guaranteeing the
existence of an efficient-negative-externality-free state than to implement a
fine initialization of the process.
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1 Introduction

An economy with a finite number of agents and a finite number of states is considered.

When the economy lies in a state every agent receives a payoff flow that may arbitrarily

depend on the identity of the agent and the state. An exogenous institutional rule

prescribes how states can be changed over time by specific coalitions of agents. At

each time an agent is called to act with some exogenous (possibly state-dependent)

probability. He can choose a coalition and a new feasible state to move the economy

to. Side-payments between agents are allowed, and agents are assumed to be patient

and far-sighted, e.g. when choosing a move they take into account how other agents

might in turn react, and so on without limit. The setup can be interpreted as providing

an abstract model of dynamic processes of social and economic interactions. Three

potential applications are discussed: legislative bargaining, coalition formation and

exchange economies. In legislative bargaining, states stand for policies and the set

of allowed transitions is defined by the constitutional setting. In coalition formation,

states stand for the partitions of agents into coalitions and transition from one coalition

structure to another requires the consent of those agents who change coalition. Finally,

in exchange economies, states stand for the allocations of goods to agents and the notion

of property right dictates that any agent whose allocation is affected should approve

the transition.

Our interest lies in the study of the efficiency and convergence properties of such

dynamic processes of social and economic interactions. The contracting possibilities

available to agents are clearly an important determinant of the outcome of the interac-

tions among agents. Specifically, if long-term contracts can be offered then efficiency

obtains, as should be expected from the Coase Theorem. That is, by allowing com-

mitments to actions or non-actions to be taken in future stages, long-term contracts

guarantee that the economy moves immediately to the Pareto efficient state with no

further move. More surprisingly, we establish that if only spot contracts can be offered

- that is, only commitments to immediate actions are available - efficiency also obtains
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in the dynamic economy, and there is also an immediate move to the efficient state

with no further move. In the spot contracting scenario, efficiency obtains because the

designer of the contract has the possibility of threatening any agent included in the

contract to make, in case of disagreement with this agent, the worst possible move for

the agent, thus inducing the latter to make a payment to the designer just to stay in

the efficient state.2 But, when the approached agents can react to the proposed spot

contract by forming a ring (thereby coordinating their response), the picture is quite

different.3 Indeed, most threats targeted to deter deviations by single agents then be-

come ineffective, as the approached agents can always by all refusing the contract force

the proposer to withdraw his offer. We show that if a solo player has no right to change

the state of the economy on his own then the equilibrium contract offers have a simple

form (that applies to every state and to whoever is the proposer): take-it-or-leave-it

offers conditioned upon the acceptance of all approached agents, where no change of

state and no transfers take place, if one (or more) approached agents refuses the offer.

We believe there are quite a few applications for which the restriction to collusion-

proof spot contracts is very reasonable. The main goal of this paper is to study the equi-

librium dynamics induced by such a collusion-proof spot-contracting scenario (which is

equivalent to the simple take-it-or-leave-it offer contracting scenario described above).

In contrast to our other contracting scenarios, we observe that rich dynamics and long

run inefficiencies may arise. More precisely, we observe in a series of examples that the

economy may sometimes have cycles (i.e., the economy keeps moving from one state to

another even in the long run), and when it converges the limiting states may sometimes

be efficient and sometimes inefficient. Whether or not the economy converges to a sta-

ble state may also depend on the probabilities that the various agents are selected to

make proposals. Thus, efficiency is no longer guaranteed, and we provide several exam-

ples taken from our three main applications, legislative bargaining, coalition formation

and exchange economy, where this is the case.

Of course, whether or not inefficiencies arise depends on the form of payoffs and

2This kind of blackmailing contract has been first highlighted in static contracting setups by Jehiel-
Moldovanu-Stacchetti (1996). We use its property to establish efficiency in our dynamic game.

3In some sense, this amounts to give the same commitment abilities to the designer as to the
approached agents.
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the set of allowed transitions as well as the discount factor and the probabilities of

being proposer in every state. An important contribution of this paper is to provide

conditions under which efficiency should be expected. The key intuition (to be further

analyzed and refined) for why inefficiencies and instabilities arise is that sometimes a

move by agents to an inefficient state may enhance their bargaining position at the

expense of negative externalities imposed on other agents.

Several results provide a sharp characterization of the efficiency and convergence

properties of equilibria. A robust conclusion that applies to any specification is that

there is no effect of the initial state on the long run properties of the system, as long as

agents are sufficiently patient. Observe that this insight holds true whether the system

cycles or converges and whatever the efficiency properties of the limit behavior of the

system. The irrelevance of the initial state with respect to the long run properties

indicates that there is no point in re-initializing the system to another state if one is

to maintain the rest of the process unchanged.

Since inefficiencies may sometimes occur, and since efficiency is affected by the in-

stitutional transition rules, we may conclude that reforms aimed at improving economic

efficiency should mostly bear on the form of the allowed transitions (rather than on a

fine initialization of the system). Whenever possible, reforms should also bear on the

contracting possibilities available to agents.

When can we guarantee that the equilibria of our economy are efficient and even-

tually converge to a steady state? The answer to these questions are of importance to

assess and/or improve the economic performance of existing institutions. We identify

a necessary and sufficient condition that guarantees for patient agents the convergence

to an efficient state irrespective of the probabilities that the various agents are selected

to make proposals (and irrespective of the initial state, as implied by the previous re-

sult). That condition combines properties of the allowed transitions and of the flows of

payoffs obtained by the agents in the various states. In short, the condition amounts to

the existence of an efficient state that is negative-externality-free in the sense that if a

(possibly indirect) transition from that efficient state to another state is possible with-

out the consent of some agent, then this agent is no worse off (in terms of immediate

flows of payoffs) in the original (efficient) state than in the reachable state.
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The existence of an efficient-negative-externality-free (ENF) state is key for the

following reason. Consider an efficient state a that is not free of negative externalities.

That is, there is a group S, a state b such that S can move from a to b (possibly in

several steps), and an agent i outside S who derives a higher flow of payoff in state a

than in state b. There is always the temptation for group S to move from state a to

state b in order to extract some surplus from agent i (in exchange for the equilibrium

prospect of moving back to state a). This effect indeed destabilizes state a whenever

the probability that agent i is the proposer at state b is sufficiently small. In contrast,

when the efficient state a is negative-externality-free, no such move can destabilize

a, and the system must converge to state a in a finite number of steps whatever the

probabilities that the various agents are selected to make proposals in the various states

and whatever the initial state.

Our insights have several implications that we now review. Some implications

echo and/or complement results already present in the literature (although typically

obtained in less general setups). Others shed new lights on strands of literature that

used different (generally static) approaches.

In legislative bargaining, a legislator cannot credibly commit to actions to be taken

in futures legislatures; so ruling out long-term contracts seems like the natural assump-

tion. Simple majority procedures for implementing changes of policy do not in general

guarantee the existence of an ENF state even in those contexts where one policy is

preferred by a majority to any other policy (see the voting example in subsection 3.1).

Received voting theory based on static approaches would predict in such a case that a

policy winning against any other policy - a so-called Condorcet winner - should emerge.

However, in our dynamic setup cycles between policies may arise at equilibrium due to

the inexistence of an ENF state. It should be noted that unlike in static approaches

(à la Condorcet, say), there is no problem in our dynamic setting to speak of cycles.

And our insights (about the emergence of cycles in dynamic settings) may suggest a

new reason for political instability in democracies. Besides, our theory suggests that in

order to guarantee convergence to an efficient state irrespective of who sets the agenda,

unanimity constraints may have to be imposed (at least to leave the efficient state as

this constraint guarantees the existence of an ENF state). Or, if unanimity constraints
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cannot be imposed, it is important to adjust finely the probabilities of who sets the

agenda in every state of the world in order to improve the functioning of the legislative

process.4

Our model also delivers interesting insights for exchange economies with durable

goods or assets. When there are no externalities (i.e. when agents care only about

their allocation), the existence of ENF states is guaranteed, and thus convergence to

an efficient state follows (this complements results obtained by Gale (1986) in a setting

with non-durable goods and no discounting). When there are externalities (i.e., when

agents care about the entire profile of allocations, see Jehiel and Moldovanu 1995ab),

long run inefficiencies may arise (because there need not be an ENF state). In simple

instances though, efficiency might obtain even with externalities (as long as an efficient-

negative-externality-free state exists).5

Our setup can also be used to speak of coalition formation in a new way. In previous

works, the concept of core played an important role in the analysis of stability. Our

analysis sheds a new light on the issue of stability (or convergence) by identifying a

new concept (other than the core), i.e., the concept of ENF states, which appears to be

the key stability concept with farsighted patient agents (while the core is more useful

for myopic agents).

The rest of the paper is organized as follows. In Section 2 we describe the model

and review the related literature. In Section 3 we explain how the model can be used

in a variety of applications. In Section 4 we provide a contract theoretic motivation

for the model. In Section 5 we derive a number of general results about the efficiency

and convergence properties of the equilibria. Concluding remarks appear in Section 6.

All proofs are gathered in the Appendix.

4Of course, we are not advocating in favor of unanimity constraints, which in a number of cases (in
particular involving voting imperfections) may be very inefficient. But, our analysis highlights some
potential problems with other less demanding majority requirements.

5For example, suppose there is only one good consisting of a cost-reducing technology and the
agents are firms competing in an imperfectly competitive fashion. Suppose the efficient state (the one
that maximizes the profit of all firms) requires that firm i gets the innovation and suppose that all
other firms’ profits are higher when firm i gets the innovation (because, say, firm i induces a softer
competition than other firms). Then our result shows that firm i will eventually own the cost-reducing
innovation and will never resell it to another firm (because the efficient state -firm i owning the good
- is negative-externality-free).
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2 The Model

Consider an economy with a finite number n of agents, a finite number m of possible

states, and infinitely many periods of interactions, k = 1, 2.... We let N = {1, ..., n}
denote the set of agents, and Z denote the set of states. Agents all have the same

discount factor δ,6 which in most part of the paper will be assumed to be close to 1.

As the economy lies in state a ∈ Z, agent i derives a flow of utility equal to (1−δ)vi(a)
per period.7 Side-payments between agents can also be made at any period and in any

state, and utilities are assumed to be transferable between agents (i.e. quasi-linear in

money).8 That is, let ak and tki be respectively the state in period k and the transfer

received by agent i in period k. Let eζ denote the stochastic process governing ak and
tki .

9 Agent i’s expected utility induced by this stochastic process is

Eeζ
" ∞X
k=0

δk[tki + (1− δ)vi(a
k)]

#
,

where E denotes the expectation operator.

A key feature of our analysis is that the transitions from states to states are deter-

mined by the agents themselves in every period. In every state, agents are selected to

make proposals. A proposal consists of an offer to a group of agents to move from the

current state to another state - where the move is required to be feasible for the group

- and possibly side-payments between the group members.

The set of transitions that a group of agents is allowed to implement depends on

the institutional setting. In the next Section we consider several major applications

of our setup, which in each case suggest a natural way of defining the set of allowed

transitions. For example, in exchange economies, the states stand for the various
6The analysis easily extends to the case where agents have different discount factors. We have

chosen to present the model with equally patient agents to alleviate a bit the notation.
7Thus if the state were to be permanently a agent i would derive a total utility equal to vi(a).
8The transferability assumption implicitly rules out capital market imperfections, in particular

related to borrowing constraints (were the budget of an agent be insufficient to finance some desired
side-payment). Note that if the payoffs are normalized so that all vi (a) ≥ 0, then a sufficient condition
for agents not to be budget constrained (so that capital market imperfections become irrelevant) is

that each agent i has wealth wi ≥ max
a∈Z

³P
j∈N vj (a)

´
.

9Later on this stochastic process will be made endogenous (the result of the strategies employed
by the agents).
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possible allocations of the goods, and the change of ownership of an asset requires the

approval of the buyer and of the seller of the asset, which in turn defines the set of

transitions that a group of agents can implement (i.e. any change of ownership of the

assets owned by the group members, but not of assets that are not owned by them).

The institutional setting is taken as given in our paper. Accordingly, the set of

allowed transitions is given exogenously. Formally, the set of allowed transitions is

defined as a relation→ over pairs of states (a, b) and groups S of agents, where a→S b

means that if all agents in S approve a transition from state a to state b the transition

can be implemented.10

Note that, for example, in the voting application to be discussed below the states

stand for the policies or laws and any majority of agents is enough to implement a

change of policy. As will be further discussed in the next Section, this is covered by

our model by letting a→S b whenever S contains a majority of agents, |S| > n
2
. Thus,

changes of state do not require, in general, the unanimous consent of a specific (or

pivotal) group S of agents to be implemented.

Throughout the paper, we make the following assumptions about the transition

relation:

A1) For all a ∈ Z and S ⊆ N , a→S a. (Staying in the same state is always possible.)

A2) For all a, b ∈ Z, if a→S b then a→T b whenever S ⊂ T. (If a subcoalition S ⊂ T

may move from state a to state b so may coalition T.)

A3) For all a, b ∈ Z, a→N b. (If everybody agrees, a transition from state a to state b

is always possible.)

In words, A1 states that one may always (if one wishes) stay in the current state

(the status quo is always available). A2 states that if the consent of agents in S is

enough to move from state a to state b, then the extra consent of agents outside S

cannot make the move unfeasible. A3 states that if everybody approves the change

from a to b then it can be done. In all applications discussed below, Assumptions A1,

A2 and A3 are trivially met.

The timing of events in our game is as follows. Let a be the current state at the
10Alternatively, the transition rule is associated with a subset F ⊂ Z × Z × 2N , so that a →S b if

and only if (a, b, S) ∈ F .
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start of period k. Agent i is selected with probability pi(a) to make a proposal at that

state. When selected, agent i’s offer τ consists of a subset S of agents (with i ∈ S), a

state b, such that a →S b and transfers t = (tj)j∈S between members of S such thatP
j∈S tj = 0. In words, the offer τ = (S, b, t) stands for a proposal made by agent i to

agents j ∈ S to switch from state a to state b in exchange for side-payments t = (tj)j∈S

where tj is the payment received by agent j.

Upon the offer τ = (S, b, t) being made, the agents in S respond to the offer by

yes or no.11 If the offer is rejected by any agent then the economy moves to the next

period and the state remains unchanged (i.e. it remains a) with no side-payments being

made. Otherwise, if all agents in S accept the offer then the state of the economy moves

immediately to b and the (lump-sum) transfers t are made.12 So offers in the model are

take-it-or-leave-it offers in which any approached agent can block its implementation.

The above dynamic game is characterized by the transition relation →, the flows
of payoffs in every state v = {vi(a)}i,a, the probabilities of being proposer in every
state p = {pi(a)}i,a and the discount factor δ. This game is referred to as the economy
E (→, v, p, δ). Some properties will refer to the specification of the transition relation

→, v and p only (but not δ); we will then speak of the (→, v, p)-economy and denote

it by E (→, v, p). Some properties will refer to the transition relation and v (but not p

and δ); we will then speak of the (→, v)-economy and denote it by E (→, v).13

Equilibrium and efficiency:

Throughout the paper, we restrict attention to Markov Perfect Equilibria (MPE),

11We could either assume that agents respond in order (the specific order being irrelevant) or that
they respond simulatenously, in which case we restrict attention to equilibria in undominated strategies
(so as to avoid coordination problems).
12Note that the offer being made at the start of a period if the transition is implemented it is

operating at the start of the period (there is no lag in the implementation of a transition).
13The bargaining friction considered in our model is that players are impatient and bargaining

takes place in real time so that players derive flows of payoffs as the bargaining process goes on. An
alternative friction considered in the literature is that of the risk of breakdown after each round of
negotiation. If breakdown is assumed to result in the stopping of the economy at the current state
with no further interaction (that is, if the final state is a, player i derives a payoff equal to vi(a)), it
is readily verified that under the VNM assumptions the economy with exogenous risk of breakdown
and the one with discounting and flows of payoffs are equivalent and thus have the same equilibria
(see also Binmore, Rubinstein, and Wolinsky (1986)).
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which we refer to as equilibria in the main text. In a MPE, the strategies used by

the players may only depend on the current state of the economy (and also, for the

proposer, on his identity, and, for the responders, on the proposal). Mixed strategies

which take the form of randomizations over proposed offers are allowed and in fact

required to guarantee the existence of MPE.14

Formally, a Markovian strategy for player i denoted by σi specifies for every state a

such that pi(a) > 0 a probability distribution over all feasible offers (S, b, t) that agent

i can possibly make at state a (i.e., satisfying a→S b), and for every state a0 and every

offer (S0, b0, t0) such that i ∈ S0 and a0 →S0 b
0, a probability of acceptance for player i.

Definition 1 (Markov Perfect Equilibrium) A strategy profile σ = (σi)ni=1 is a Markov

Perfect Equilibrium if for each player i, σi is a Markovian strategy, and after every

history of play, σi is a best-response for player i when other players −i play according
to σ−i.

Efficiency in our context boils down to welfare efficiency, since utilities are assumed

to be transferable. Accordingly,

Definition 2 (Pareto Efficiency) A state a ∈ Z is efficient if a ∈ argmax
a0∈Z

nP
i=1

vi(a
0).

In order to interpret more broadly our results, we will consider the following extra

assumption on the transition relation:

A4) For all i, there are no a, b ∈ Z, a 6= b such that a →{i} b. (A single player i alone

cannot change the state.)

In words, A4 states that a single player alone cannot change the state of the econ-

omy. Even though A4 is not needed for the analysis of the model defined above, we

note that A4 is met in most of the applications to be discussed below. Besides, A4

will allow us to interpret our dynamic game as a game in which any collusion-proof

spot contract can be offered by the proposer, thus a priori allowing for more elaborate

offer contracts than the above model permits (see Section 4). Thus, under A4 (and the

14Mixed strategies may as usual be interpreted as pure strategies by enriching the model and allowing
the players to adjust their behavior on a signal that they are the only ones to observe (for example an
idiosyncratic one-shot perturbation of the flow of payoffs vi(a)). This is Harsanyi’s purification idea.
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collusion-proofness requirement), the only contractual constraint imposed by our model

is that only spot contracts can be offered (i.e., no long-term contracts can be proposed).

Related literature: The non-cooperative model used in this paper shares a number of

features with the model used by Gomes (2003) to study coalitional bargaining problems

with externalities. The states of the economy in his setting are the contracts written by

coalitions (which can only expand), and he shows that equilibria always exist and are

efficient if the grand coalition is efficient and players are patient.15 The framework used

in our paper differs from Gomes (2003) in that we allow for more general transition

relations which include the possibility that coalitions may break-up, while in Gomes

(2003) coalitions can only expand and become coarser.16 Allowing for such general

transition rules is indispensable to be able to generate cycles such as those arising

in the examples of Section 3, and to analyze the conditions that rule out cycles and

inefficiencies (Section 5).

There are a few other papers in the bargaining literature which share with the

present paper the generality of the setup. These include Rosenthal’s (1972) “effective-

ness form”, Greenberg’s (1990) “inducement correspondence”, and more recently Chwe

(1994), Xue (1998), and Konishi and Ray (2003), who all use specifications similar to

our transition relation - Konishi and Ray (2003) also model the process of coalition for-

mation in real time with agents receiving a flow of payoffs. An important distinction

between our approach and the one in these studies is that we adopt a purely non-

cooperative view (in the sense that the only decision-makers are the agents themselves

in our setup). Moreover, we allow for side-payments between agents and we impose

some mild restrictions on the allowed transitions (which are satisfied in all applications

we discuss). That extra structure of our setup allows us to obtain sharp predictions in

terms of the effect of the initial state and about the conditions ensuring convergence

15In our setting too when the grand coalition is efficient, it is negative-externality-free and efficiency
must obtain (see Proposition 6 and the discussion thereafter).
16It should also be mentioned that we only consider finite state spaces economies while Gomes (2003)

allow for infinite state space, which arises naturally in the context of coalitional bargaining games with
externalities where players can offer payoff contracts (see also section 3.2 for further discussions of
coalitional bargaining games).
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to an efficient state, which the previous literature did not obtain.

3 Applications

In this Section we review a number of applications to which our general model is

relevant. For each application, we discuss the meaning of the main assumptions of the

model. In particular, we review the meaning that (i) the transition relation satisfies

assumptions A1-A4, (ii) only spot contracts can be proposed, and (iii) payoffs are flows

occurring during the bargaining process. We also exhibit in each case an illustrative

example with rich equilibrium dynamics, and we discuss how our general insights (to

be developed later) help understand the application.

3.1 Legislative Bargaining

Our first main application is that of legislative bargaining. Consider a situation with n

legislators i = 1...n in which there may be ongoing transitions from policies to policies

in a set Z. Policies can be changed whenever a new parliamentary session comes

about. The time separating two sessions corresponds to one period in our model.

Clearly, the current policy a ∈ Z (that prevails between two sessions) affects the flow

of payoffs received by the legislators through the consequences that the policy may have

on the legislators (the consequences may depend on how the constituency represented

by the legislator appreciates the policy). Hence the flow formulation is natural in this

application, and we let vi(a) be the normalized flow of payoff received by legislator i

when policy a prevails. Besides, the current policy may also have an effect on who

has the control over the agenda setting. Accordingly, we let pi(a) be the probability

that legislator i has the control in state a. Regarding the transition relation→, this is
clearly defined by the rules of the constitution. For example, a constitution specifying

that any change of policy can be implemented provided a strict majority of legislators

approves it can be represented as: a→S b whenever the number of members of S (i.e.

| S |) represents a (strict) majority of N (i.e. | S |> n/2). Any other qualified majority
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rule can be represented similarly.17 Clearly, any such transition relation satisfies A1-

A2-A3. A4 is also satisfied provided the consent of at least two legislators is required

to change any policy (which is obviously the case in qualified majority rules except for

dictatorship).

Our model of legislative bargaining implicitly assumes that if a majority S proposes

a switch from policy a to policy b, this is implemented. In a number of legislative

bargaining contexts though, a policy is not implemented through the initiative of a

majority. A proposal to vote on policy b is put on the agenda (by whoever controls

the agenda setting), and a vote among all legislators takes place. If a majority votes

in favor of it, policy b is implemented, but not otherwise.

Our model also fits with such a setup, but one needs to think of the agenda setter as

being able to implement a bribing game prior to the effective vote. (This is close in spirit

to the distributive approach first proposed by Shesple (1979) and further developed by

Baron-Ferejohn (1989) and Diermeier-Myerson (1999).) The offer (S, b, t) made by

proposer i in our model should be interpreted as follows: Legislator i buys the votes

(for b) of legislators j 6= i in S in exchange for the bribes defined by the transfers

t.18 The bribes and sales of voting rights are all made contingent on all agents in S

accepting the deal. Otherwise, the status quo (i.e. current policy a) prevails with no

bribe being made.19 It is not difficult to see that such a legislative bargaining game is

formally equivalent to assuming in our model that a→S b whenever | S |> n/2.

Baron and Ferejohn (1989) have proposed a model of legislative voting that re-

sembles the one considered here with the notable difference that once a policy a is

implemented this is the end (see also Banks and Duggan (2001)). By contrast, our

setting allows the legislators to go back and forth from one policy to another. This

17If a majority can impose a taxation on a minority this can be represented within our setup by
expanding the set of policies to specify different taxation scenarios, still keeping the assumption that
side-payments (outside the direct effects of the state on the payoff which are captured by vi(a)) only
take place within the agents who approve the transition.
18They may be of either sign in our model (see below).
19This implicitly assumes that the legislators in S can first observe whether everyone has approved

the deal before the sale of voting rights and bribes are implemented. Also, our restriction to spot
contracts should be understood as allowing for any kind of commitment within the parliamentary
session.
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possibility which seems consistent with common practice will in turn give rise to rich

dynamics, as will be illustrated later.

We now discuss two features of our model in the legislative bargaining context: the

possibility of side-payments and the restriction to spot contracts.

• About the possibility of side-payments: When legislators represent different bod-
ies of a government, side-payments can be interpreted as budgetary transfers be-

tween the various bodies. In some circumstances though, explicit side-payments

between legislators seems harder. However, even if explicit side-payments are

not possible, they can often be viewed as reduced forms for favors that legisla-

tors would make between themselves (see also Diermeier and Merlo (2000)). Our

model considers the benchmark case in which such favors are a perfect substitute

for side-payments.20

• About the restriction to spot contracts: In legislative bargaining contexts, there
seem to be very few examples of long-term contracts. (In most developed coun-

tries, a legislator would have a very hard time trying to credibly commit to actions

to be taken in futures legislatures.)21 Thus, assuming that only spot contracts

can be proposed seems plausible.

To illustrate the predictions of our model in the legislative bargaining context,

consider the following voting game with three players i = 1, 2, 3 and four possible
20As we will see, even if side-payments are feasible inefficiencies must arise in some cases. A

fortiori inefficiencies would also arise when side-payments are restricted and/or favors are not a perfect
substitute for side-payments. The exact analysis of when efficiency can be expected in the non-
transferable utility case would however require further research.
21While it is clearly beyond the scope of this paper to analyze why long-term contracts are so rare

in political contexts (changes of the consitutions are one of the very few examples), one may mention
a simple argument. In the real world, legislators do not stay in office for ever and even if they do
stay in office for a few legislatures, it is hardly conceivable that they could commit to some political
actions to be taken next when there is some uncertainty as to whether they will still be in office. The
possibility that the legislator may physically change from one period to another may be responsible
for why essentially only spot contracts are observed in the political arena.
From a formal viewpoint our model does not assume that legislators change from one period to

another. Yet, it can easily be re-interpreted this way. In each period k there should be a different
player (i, k) where all players (i, k) share the same objective (that can be interpreted as the well-being
of the constituency in jurisdiction i). Clearly, the MPE of our game are also MPE of the multi-player
version of the game and vice versa.
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policies s = a, b, c, d with corresponding flows of payoffs as shown below:

vi (s) a b c d

1 1.5 1 0 1.6
2 1 0 1.5 1.6
3 0 1.5 1 1.6

.

Any policy can be passed by majority voting. We assume that all players are the

proposers with equal probability in all states.

Any static voting approach would predict that policy d should emerge, since no

majority prefers a, b or c over d.22 In fact, policy d is even unanimously preferred over

a, b, c. Accordingly, for low discount rates the equilibria of our dynamic voting game

are such that from any state there is a move to state d and the economy remains at d

forever.23

But, the picture changes drastically when players get more patient. Staying in d for

ever is no longer part of an equilibrium, and cycles must emerge in equilibrium when

players are patient enough.

To get an intuition, we first observe that an immediate jump to state d without any

further move (which would mimic the equilibrium pattern in the myopic case) cannot

be part of an equilibrium. Indeed if such transitions were part of an equilibrium, at

state d players would strictly prefer moving to another state rather than staying at state

d, thus leading to a contradiction. To see the point, assume that player 1 is selected

to make a proposal at state d. When δ is sufficiently close to 1, player 1 would strictly

prefer proposing to player 2 to move to state a rather than stay in state d. Indeed,

a jump to state a induces an immediate loss to players 1 and 2 of (1 − δ)(3.2 − 2.5).
But, this immediate loss is more than compensated by the expected gain that players 1

and 2 can make by extracting money from player 3 in exchange for going back to state

d. Specifically, under the assumed equilibrium transitions, the expected total utility of

players 1 and 2 at state a should be 2.5+ 2
3
(4.8− 2.5) > 3.2, where 2.5 is the status quo

value of players 1 and 2 and 2
3
is the probability that they can be proposers (thereby

extracting the full total state d surplus for them). Hence, when δ is sufficiently close

22Policy d would be referred to as a Condorcet winner in the political science literature.
23The equilibrium values are φi (s) = vi (s) + 2.3/3 for s = a, b, c which is the status quo plus a

third of the surplus, and φi (d) = 1.6. The equilibrium holds for all δ < 0.46.

15



to 1, the expected gain to be made next by players 1 and 2 when at state a more than

compensates the immediate loss due to a move to state a.

[Insert figure 1 here]

The equilibrium for δ = 0.9 is shown in Figure 1. It exhibits some interesting prop-

erties. In equilibrium (see also Appendix for a formal derivation of the equilibrium),

when at say state a, players 2 and 3 strictly prefer moving to state c which is the state

that hurts player 1 in the short-term the most (payoffs at state a are 1.5, 1, and 0 and

at state c are 0, 1.5, and 1), and player 1 strictly prefers moving to state b which is

the state that hurts player 2 the most (payoffs at b are 1, 0, and 1.5). When at state d

players 1, 2 and 3 propose to move, respectively, to states a, c and b. So whatever the

initial state the system cycles between states a, b, c with an equal frequency of visit for

each of these three states, and when players are patient enough the system actually

never visits state d.

At first sight it might seem strange that state d - which is unanimously preferred to

other states - happens to be highly unstable. The reason is that somehow each player

can improve his bargaining position by moving to another state, say state a for player

1. But, player 1 alone is not allowed to move to state a. Yet, players 1 and 2 together

can move to state a, and they are jointly in a better bargaining position in state a than

in state d, as state a allows them to extract surplus from player 3 who suffers a lot in

state a. It is interesting to note that in equilibrium once in state a, the system does

not move back to state d because players 1 and 2 always prefer to move to either state

b or c in order to extract more (in the future) from the left aside agent (they are also

afraid that in state d player 3 might exploit them when he is the proposer).

The fundamental reason why the outcome of the equilibrium is inefficient will be

identified formally in the rest of the paper. In short, inefficiencies arise because moving

away from the efficient state d to state a can be done without the permission of player

3 and player 3 is worse off in state a than in state d. In the language of our paper,

we will say that the efficient state d is not negative-externality-free, and whenever the

efficient state is not negative-externality-free inefficiencies may occur when players are

patient enough.
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It should be noted that if in the same example we had required that to move away

from state d unanimous consent were required, then the efficient state d would have

been negative-externality-free, and the economy would have converged to the efficient

state in a finite number of steps (hence no cycles would have occurred). Different

transition relations thus result in very different dynamics and an important contribution

of this paper is to identify the conditions on the transition relation that guarantee the

convergence to an efficient state.24

3.2 Coalitional Bargaining Games

Our second main application is that of dynamic coalition formation. In this application,

the set of states can be viewed as the set of partitions π of the playersN = {1, ..., n} (we
let Z = Π be the set of partitions of the N players). Regarding the transition rule, we

assume that players who change coalitions should approve the transition. Formally, the

transition rule is defined as follows: for any two partitions (states) π and π0, π →S π0

if and only if S contains those agents whose coalitions changed.

Note that the transition relation clearly satisfies assumptions A1-A4. Besides, it

allows for coalitions to break up or expand at any point in time, which is in contrast

to most of the literature on non-cooperative models of coalition formation.25

To illustrate the transition rule, consider a situation with three players N =

{1, 2, 3}, and assume that the current state is defined by a two-player coalition made
of players 1 and 2 and a solo coalition made of player 3. We refer to such a partition as

[12][3].26 A move from [12][3] to [1][2][3] (which corresponds to a break-up of coalition

[12]) can be done with the sole consent of players 1 and 2 (so neither player 1 nor 2 can

leave the coalition [12] without the consent of the other player). A move from [12][3]

to state [123] (expansion of coalition [12]) or a move to state [13][2] (reorganization of

coalitions) requires the consent of all three agents. Also, a move from the grand coali-

tion [123] to any other coalition structure (break-up of the grand coalition) requires

24Clearly, our results have no counter-part in the static approaches to voting in which the possibility
of cycles and/or instability is solely attributed to the form of payoffs (think of Condorcet cycles).
25Most of the literature assumes that coalitions leave the game when they form (see Chatterjee et

al. (1993), Ray and Vohra (1999)), or assumes that coalitions can only expand (Gomes (2003)).
26More generally we represent coalitions and partitions using brackets in a similar fashion.
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the consent of all three agents.

Finally, vi(π) is the flow of payoffs obtained by player i when the coalition struc-

ture is given by π. And we let δ be the discount factor and pi (π) ≥ 0 (such thatP
i∈N pi (π) = 1) denote the probability that agent i makes a proposal in state π.

The main restriction imposed by our setup is that players cannot commit to future

actions, i.e. decisions to be made in future stages about whether to stay or quit coali-

tions. This, in particular, rules out the possibility for a player to delegate his decision

rights (about whether to join or quit a coalition) to another player. But, in many

coalition bargaining contexts, the no-commitment assumption sounds plausible.

Related literature: Previously studied coalition formation games in dynamic settings

take either the form of coalitional bargaining models with externalities (e.g., Bloch

(1996), Ray and Vohra (1999), and Gomes (2003)) or the traditional form without

externalities (e.g., Gul (1989), Moldovanu and Winter (1994), Perry and Reny (1994),

Hart and Mas-Colell (1996)). Generally, the externalities of the coalitional game among

N = {1, ..., n} players are described by a partition function v(S, π) ∈ R that stands for

the value of coalition S given the partition π = {S1, ..., Sk} of the N players. When

there are no externalities (or, in the language of cooperative game theory, when the

game has a characteristic form representation) the additional restriction that v(S, π) =

v(S, π0) for all S ∈ π∩π0 is imposed, that is, the value of coalition S does not depend on
the whole architecture of coalitions, but solely on who is in S. In our non-cooperative

model, we specify an arbitrary payoff vi(π) compatible with v(S, π), i.e. any choice

satisfying v(S, π) =
P
i∈S

vi(π). However, our approach of choosing an arbitrary payoff

is justified because as in Gomes (2003)’ setup the equilibrium of the game where the

payoffs are endogenous is essentially the same (similar transition probabilities and value

function) as the equilibrium of the game in which we fix any arbitrary payoffs.

Our analysis delivers several insights. First in the traditional situation in which

individuals solely care about the composition of the coalition they belong to, i.e. there

are no externalities, then convergence to the efficient partition is guaranteed (whether

it is the grand coalition or not). Second if the grand coalition is the Pareto efficient

allocation, then it will eventually arise in a finite number of periods, whether or not

18



there are externalities. These two results follow from the observations that in these

two cases the efficient state is negative-externality-free (see below for a formal general

definition).

But, in more general situations the equilibrium may or may not be efficient depend-

ing on whether or not there exists an efficient partition that is negative-externality-free.

To illustrate the possibility of inefficiency (and rich dynamics), consider the following

example:
vi(s) [1][2][3] [12][3] [13][2] [23][1]
1 1 2 2 -2
2 1 2 -2 2
3 1 -2 2 2

We assume that all players have an equal chance of being the proposer in every state,

and players are very patient. In this example, the grand coalition [123] is not considered

because it yields arbitrarily low payoffs to every player, say.

[Insert figure 2 here]

For every δ sufficiently close to 1, this economy has a unique equilibrium. The

limit as δ goes to 1 of this equilibrium is such that equilibrium payoffs and equilibrium

transition probabilities, for each state, converge to the values indicated in Figure 2.

The efficient state of this economy is [1][2][3]. But, the system does not converge to

[1][2][3], since all states are visited infinitely often in the long run.

Why doesn’t the system stay in state [1][2][3]? If that were the case, each player

would get a payoff of 1. But, player 1 say could achieve a strictly higher payoff by

proposing to player 2 to form a coalition (i.e. move to [12][3]). Hence, the system

cannot stay in [1][2][3], and it must cycle. It turns out that the only equilibrium cycle

is the one shown above in which all states may occur in equilibrium.

The same example can also be used to show a role for intermediaries in coalition

formation. Specifically, consider a fourth dummy player - referred to as player 4 - in

the above example. He is considered as dummy because he never considers joining

any existing coalition (he is always in a solo coalition) and he gets the same payoff

no matter how other players are partitioned into coalitions. Also, we assume that all

four players are proposers with equal probability in all states and the discount rate
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is infinitesimally close to 1. We can show that there exists an equilibrium in which

player 4 makes positive profits even though all players are very patient and player 4’s

consent is not required for any transition. Such a result suggests a positive role for

intermediaries in our setup.

At first sight, it might seem counter-intuitive that a player who has no intrinsic

role in the economy makes positive profits in the limit. Indeed, if players 1-2-3 desire

collectively to move from state s to state s0, why can’t they do it themselves leaving

no rent to player 4?

The problem is that there is no consensus among players 1-2-3 about which pattern

to follow. In the disaggregate state [1][2][3][4] player 1 is eager to form a coalition with

either player 2 or 3, but he is very afraid that players 2 and 3 might form a coalition

themselves (if they happen to have the lead in the proposal making at that state). This

in turn implies that, when player 4 is the proposer at state [1][2][3][4] , player 1 is ready

to pay player 4 some significant amount so that the system moves to state [12][3][4]

say, and the risk that players 2 and 3 move to [1][23][4] is avoided (in fact reduced and

postponed).

3.3 Exchange Economies

A third major application of our setup is that of exchange economies. Consider an

economy with n agents N = {1, ..., n} andm indivisible goods. Agents start with some

endowment and they can exchange their commodities over the various time periods.

Note that our setup does not allow for long-term contracts, hence we do not allow for

exchanges of financial assets such as futures or options.27 In each period, the state

space Z of the economy is represented by the profile ω of allocations (ωi)
n
i=1 where

ωi is agent i’s allocation in the current period and ωi ∩ ωj = ∅ for all i, j ∈ N (joint

ownership is not allowed).

As the notion of property right suggests, a move from state ω to state ω0 requires

the consent of agent i whenever agent i’s allocation is modified, i.e. ωi 6= ω0i. Thus,

the transition rule for the exchange economy is: for any ω, ω0 and subset S of agents

27Our model is better adapted to economies with less developed financial markets.
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ω →S ω0 if {i ∈ N : ωi 6= ω0i} ⊆ S. Clearly, such a transition rule satisfies assumptions

A1-A4.28

We do not make any restriction as to the probabilities pi(ω) that agent i makes the

offer in state ω. Thus, even someone whose allocation does not change may propose a

trade from ω to ω0. This, in particular, allows us to analyze the role of intermediaries

in exchange economies.

We further assume that agents have the same discount factor δ = 1
1+r

where r can

be interpreted as the interest rate in the economy.

Regarding the payoff specification, we distinguish between exchange economies with

and without externalities:

• In the no externality case the flow of per period payoff of player i in state ω is
(1− δ)ui(ωi) where ui stands for agent i’s utility function.

• In the externality case the flow of per period payoff of player i for a given allo-
cation profile ω does not solely depend on ωi but on the entire allocation profile,

i.e. it is of the form (1− δ)ui(ω).

Related literature: (1) Bargaining setups of exchange economies without externality

have been first studied by Rubinstein-Wolinsky (1985) and Gale (1986). Note that our

setup allows for multilateral exchanges whereas Rubinstein-Wolinsky and Gale focus on

bilateral exchanges. Note also that Gale and Rubinstein-Wolisnky assume that there

is only one time of consumption whereas our setup uses a flow formulation for payoffs.

Our setup is thus more adapted to deal with exchange economies of durable goods.29

(2) Bargaining setups of exchange economies with externality have been first studied

by Jehiel-Moldovanu (1995ab-1999) in the one-object case. Our setup allows for an

arbitrary number of goods.

Our analysis delivers several insights in the exchange economy application. First,

when there are no externalities, the economy must result in an efficient allocation of
28In production economies in which investments can be made prior to the transactions, assumption

A4 would be violated. The general analysis of collusion-proof spot contracts when A4 is not met
should be the subject of further research.
29In Gale (or Rubinstein-Wolinsky)’s setup the offer is made by either of the parties who exchange

their goods, whereas in our model intermediaries may propose trades to whoever they wish.
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goods in a finite number of steps. This result is reminiscent of and complements the

insights of Gale (1986), which were obtained in a slightly different setup with infinite

populations, no discounting and non-durable goods (see above). Efficiency obtains here

because the efficient state is negative-externality-free in this case.

In exchange economies with externalities, several interesting dynamics may emerge.

Sometimes cycles between states may emerge in equilibrium, or as the following ex-

ample illustrates, the economy may converge to an inefficient state. To illustrate this

possibility, consider an exchange economy with one asset A and three agents. The

agents’ utility are contingent on the identity of the owner of the asset, as shown below,

vi (s) ω1 = A ω2 = A ω3 = A

1 7 0 0
2 0 6 -3
3 0 0 7

and all proposers are chosen with equal probability in all allocation configurations.

In Figure 3 we show the unique equilibrium payoff and transition probabilities for δ

infinitesimally close to 1.

[Insert figure 3 here]

Even though the state where player 2 owns the asset is inefficient -it yields a welfare

of 6 whereas player 1 owning the asset yields a welfare of 7-, it is stable. Player 2 is

not willing to sell the asset to player 1 because she knows that whenever 1 gets the

asset, instead of keeping it, he will sell it at a profit to player 3. There are profits to be

made with this inefficient transaction at the expense of player 2, because when player

3 owns the asset he imposes a significant negative externality on player 2.

To conclude this application section, observe that the various examples presented

above all contained inefficiencies and/or rich dynamics (i.e. cycles). The fundamental

reason for inefficiencies and/or rich dynamics is the fact that the efficient state say

zeff is not negative-externality-free. That is, it is possible to leave state zeff without

the consent of player j to say state zineff and player j is worse off (in terms of flows

of payoffs) in state zineff than in state zeff . Our general analysis thus permits a fine

understanding of the causes of inefficiencies in dynamic processes of social and economic

interactions in which only collusion-proof spot contracts can be proposed.
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4 Contracts and Collusion

The purpose of this Section is to provide some preliminary results such as existence

and characterization of the equilibrium of our main model as well as provide a contract

theoretical motivation for our model. In our model, offers take a simple form: take-

it-or-leave-it offers in which any approached agent can block its implementation. But,

we will show that such a restriction on offers emerges endogenously in situations in

which agents are unable to commit to actions to be taken in future stages but are

otherwise unconstrained both in terms of the spot contracts they can offer and in

terms of collusive mechanisms that the approached agents can arrange in response to

the proposed spot contract (a collusion-proof spot contract setup).

A reader willing to see the analysis of our simple take-it-or-leave-it offer game may

read Subsection 4.1. and then jump into Section 5 (thereby skipping the contract

theoretic discussion made in Subsections 4.2 to 4.4).

4.1 Basic Properties of the Simple-Offer Economy

Let σ be a Markov Perfect Equilibrium of economy E(→, v, p, δ). For every state a

and player i, we let φi(a) represent the associated expected equilibrium value of player

i when the system is in state a (for simplicity, we omit the dependency on σ). If the

system moves to state a, player i’s continuation value (gross of transfers) is given by

xi(a) where

xi (a) = δφi(a) + (1− δ) vi (a) . (1)

That is, player i receives the flow of payoff (1 − δ)vi(a) for the current period, and

at the start of next period the system is in state a, resulting in a payoff of δφi(a) for

player i.

In the following analysis it will be convenient for any Markovian strategy σi of

player i to denote by σi[a](S, b, t) the associated probability that offer (S, b, t) is made

by player i at state a when i is the proposer at that state. It will also be convenient

to let σi(a)(S, b) denote the associated probability that player i at state a makes a

proposal to coalition S to move to state b, and to let supp σi(a) denote the support of

σi(a).
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Whenever the strategy σi (a) satisfies σi(a) (S, b) > 0, i.e. in state a with positive

probability player i makes a proposal to players in S to move to state b such that

a →S b, the (equilibrium) transfer that player i proposes to j is tj = xj(a) − xj(b).

This is indeed the minimum transfer required by j to accept the transition from a to

b, and it is such that player j is indifferent between rejecting and accepting the offer

(since tj+xj(b) = xj(a)). Thus, when player i at state a approaches S to move to state

b, transfers are uniquely determined, and the equilibrium strategy of player i can be

fully inferred from σi(a). The above argument also shows that in equilibrium, player

i at state a will approach coalition S and propose a transition to state b where (S, b)

maximizes
P

j∈S(xj(b)− xj(a)) over all feasible transitions, i.e. such that a→S b.

We establish next that an MPE always exists and is characterized by the following

properties (see Appendix for the proof and a discussion of other basic properties).

Proposition 1 There exists at least one Markov perfect equilibrium for all economies

E(→, v, p, δ). Moreover, a strategy profile σ is a MPE whenever the following conditions

hold:

i) The support of σi (a) satisfies:

supp (σi (a)) ⊂ argmax
(S,b)

(X
j∈S

(xj(b)− xj(a)) : a→S b and i ∈ S

)
; (2)

ii) For all i and a,

φi (a) =

ÃX
j∈N

pj(a)φ
j
i (a)

!
(3)

where30

φji (a) =

 xi(a) + max
(b,S)

nP
j∈S (xj(b)− xj(a)) : a→S b and i ∈ S

o
if j = iP

(S,b) σj (a) (S, b) (I(i ∈ S)xi(a) + I(i /∈ S)xi(b)) if j 6= i
(4)

is player i’s equilibrium payoff at state a when player j is the proposer at that state.

30I is the indicator operator. Accordingly, I(E) = 1 (resp. 0) if E is true (resp. false).
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4.2 Long-term Contracts

Suppose in contrast to our main simple-offer contracting scenario that agents are free to

propose and sign long-term contracts, that is, contracts involving actions or non-actions

to be taken in future stages are allowed.

In such a case efficiency must obtain at the start of the interaction when there is no

contractual agreement yet. This is because if some inefficiency were to occur when there

is no contract yet, it could easily be overcome by proposing a contract specifying that

the economy will stay indefinitely in the efficient state and also specifying appropriate

lump-sum payments so that each agent gets more than what he would have gotten

otherwise if the contractual offer were rejected. If such a contract is proposed with

the clause that if someone objects to it the contract is withdrawn, it must be accepted

in any Markov Perfect Equilibrium of the underlying unlimited contracting game.31

Hence, efficiency obtains immediately in all MPE of the corresponding game. This

result can be viewed as an illustration of the celebrated Coase Theorem.

4.3 General Spot Contracts

Suppose now that agents are not able to use long-term contracts but are able to use

general spot contracts in which allocations and transfers are contingent upon players’

responses. That is, the restriction we impose on contracts is that they cannot stipulate

actions or non-actions to be made at future stages, but unlike in the simple-offer

contracting scenario, one needs not stay in the current state if one or several approached

agents refuse the contract. That is, even if a subset of the approached agents S refuses

the contract a move from the current state a to another state z(A) with side-payments

between agents in A can still be implemented provided all agents in A ⊂ S have

accepted the contract, the transition is feasible given the sole permission of agents in

A, i.e. a→A z (A), and the contract had stipulated this in advance. We have:

Proposition 2 All Markov Perfect Equilibria of the economy with general spot con-

tracts are efficient, entailing an immediate move to the efficient state where it remains

31The Markovian assumption is used to ensure that in case the contract is not approved the ensuing
payoff do not depend on the reasons that caused the contract not to be approved.
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there forever.

The MPE of the economy with general spot contracts can be analyzed using the

basic insights of static economies with general commitments (Jehiel, Moldovanu, Stac-

chetti (1996) and Segal (1999)): The proposer should include everyone in the contract,

the outcome of the contract should be efficient, and the proposer i should extract pay-

ment from all other agents j, j 6= i by threatening each agent j to implement the

worst outcome for j if agent j refuses the contract (see in particular Jehiel, Moldovanu,

Stacchetti (1996)).

In our dynamic setting, the same logic applies with the significant difference that

continuation values are endogenously determined. Roughly, the insight from the static

literature ensures that whatever the current state and the identity of the proposer,

there should be an immediate move to the same state a∗ (i.e., the state that maximizes

xN(a) =
nX
i=1

xi (a) where xi (a) is the continuation value of player i whenever the

system moves to state a). From this property of the equilibrium transition, we are able

to infer (see Appendix) that this state a∗ is necessarily the efficient state, i.e. a∗ ∈
argmax

a∈Z

nX
i=1

vi (a).

It is somewhat surprising that long-term contracts are not really needed in order to

achieve an efficient outcome. The efficiency result is slightly surprising in light of the

fact that players are not strategically moving to states where their ability to impose

negative externalities on other players in the future is increased. Rather, just the use of

static threats are enough to sustain efficient outcomes in which there is an immediate

move to the Pareto efficient state.

To illustrate the equilibrium when general spot contracts are allowed reconsider the

legislative bargaining example of Section 3.1 allowing now for general spot contracts.

For any discount rate, the equilibrium values are just φi(s) = 1.6 for all states s =

a, b, c, d. The equilibrium strategy at any state is for proposers to make an offer to the

set N of all agents to move to state d with a threat to any player rejecting the offer to

move to the state that is most undesirable to him (for example, if 1, 2 or 3 rejects the

offer made by whoever is the proposer then move to state c, b, or a respectively). By

threatening to move to the state that is most undesirable to responders if they reject
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the offer, the proposer is able to extract all the short-term surplus of 4.8 (1− δ) from

himself and so his value is equal to 4.8 (1− δ) + 1.6δ and every responder’s value is

equal to 1.6δ. Taking into account that all players have the same probability of being

the proposer yields that the values should be equal to 1.6 in all states.

4.4 Collusion-Proof Spot Contracts

Consider now a situation in which agents are allowed to make any spot contract offer

to any group of their choice as defined in the previous subsection, but assume now in

addition that the agents approached by the proposer are allowed to react to the main

contract by forming a collusive ring and by coordinating their responses (we also allow

for side-payments between ring members). Specifically, we model the collusive stage

by assuming that if agent i offers a spot contract to the subset of agents S \ {i}, then
the agents receiving the offer can hire a third party whose objective is to maximize

the sum of their payoffs. The third party responds to proposer i’s contract offer in

place of agents j ∈ S \ {i} and she can also implement transfers among the ring
members S \{i}.32 This modelling of collusion agrees with how Laffont and Martimort
(1997) model collusion in mechanism design (see also Graham and Marshall (1987) or

McAfee and McMillan (1992) or Caillaud and Jehiel (1998)). Somehow allowing both

for general spot contracts and for collusion is a way to allow for the same commitment

abilities both on the side of the proposers and on the side of the approached agents.

Our main result is that the equilibria in both the simple-offer contract (considered

in Section 2) and the collusion-proof spot contract models are equivalent under as-

sumption A4 that no solo player can change the state on his own. The equivalence is

in the sense that given any MPE of one model there is an MPE of the other model

with the same equilibrium values for all players at all states, and the same transition

probabilities from state to state induced by the equilibrium strategy profile.33

32How the third party shares the surplus (if any) between the ring members is left unspecified.
However, for the analysis that follows how this surplus is shared is irrelevant.
33Note that the strategy space of both models are different (the extensive forms are also slightly

different), and thus it does not make sense to directly compare the strategy profiles of both models.
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Proposition 3 The Markov Perfect Equilibria of the collusion-proof spot contract and

the simple-offer model are equivalent, whenever the no-solo move player assumption

A4 holds.

Thus, Proposition 3 implies that the proposer’s benefit due to his ability to use

general spot contracts is neutralized by responders’ ability to coordinate their response.

The result holds under the assumption that a proposer alone cannot move from the

current state.34 Under this assumption, the possibility of collusion means that the set

of approached agents can always by coordinating to all refuse the contract guarantee

a payoff equal to the continuation value that they would have got if the system had

stayed at the current state.35 The proposer is thus forced to make an offer that gives

responders at least this minimum amount (otherwise collusion will take care of it). It

is not difficult to see (see Appendix) that the simple offer contracts allow the proposer

to reduce the rent of the approached agents to the minimum required amount while

avoiding any further possibility of collusion. Therefore, the proposer finds it optimal to

use simple offer contracts, and the equivalence of the two contracting scenarios follows.

5 Convergence, Stability, and Efficiency Analysis

In this Section we explore the dynamics and efficiency properties of situations in which

only simple-offer contracts can be proposed, or equivalently under assumption A4 (see

Section 4) in which only collusion-proof spot contracts can proposed. We have already

provided a number of applications with rich dynamics (see Section 3), and we wish now

to analyze further the reasons for these dynamics obtained in highly specific examples.

We first analyze the asymptotic behavior of the process and its sensitivity to the

initial state. Our main result is that the long-run behavior of the process is independent

of the specification of the initial state. We then study the efficiency and stability
34If a solo player can change the state on his own, the above conclusion is not true as a player may

now possibly use the threat to move to a less favorable state as one (or more) agent(s) refuses the
deal. Yet, in most applications of interest (as we noted above), a solo player cannot change the state,
and Assumption A4 holds.
35In the legislative bargaing example considered in subsections 3.1 and 4.3, this collusion possibility

prevents say agent 1 in the efficient state d from extracting payments from 2 and 3 just to stay in
state d (in order to avoid moving respectively to states b or a).
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properties of the equilibria. Our main result is that a robust condition that guarantees

that the stability and efficiency of the economy is the existence of a state that is

efficient and such that no move away from it imposes negative externality on excluded

players—an efficient-negative-externality-free state.

5.1 Long-run Behavior

Any equilibrium σ of the economy E (→, v, p, δ) induces a transition probability in the

state space µ (a, b) =
P

j∈N
P

S pj (a)σj (a) (S, b), where µ (a, b) denotes the equilib-

rium probability that the system once in state a moves to state b.

The equilibrium long-run behavior of the economy is described by the stable sets

(or ergodic classes) induced by µ. The stable sets of the economy are defined by two

properties: (i) starting from any state that belongs to a stable set the process remains

in the stable set forever, and (ii) no (non-trivial) subset of a stable set is stable (see

footnote 35 for a formal definition). By a well-known result of the theory of Markov

chains, starting from any state the process converges, in a finite number of steps, to a

stable set (see Doob (1953)). Therefore, the stable sets describe the long-run behavior

of the economy.

When a stable set has a unique state, we refer to it as a stable state or absorbing

state. Note that when a stable set contains several states, the system cycles between

these states. States that do not belong to a stable set are also referred to as transient

states.

The first Proposition of this Section establishes that the aggregate welfare must be

approximately the same in all states as players get very patient.

Proposition 4 The aggregate equilibrium values are approximately the same at all

states for all economies E (→, v, p, δ) if players are patient enough (δ close to 1).36

35The stable sets are the sets E ⊂ Z such that: (i) (Closedness) For any a ∈ E there exists
no b ∈ Z\E such that µ (a, b) > 0; (ii) (Irreducibility) For any a, b ∈ E there exists a sequence
a = a0, ...ak, ...am = b with ak ∈ E and µ (ak−1, ak) > 0.
36Formally, the result means that lim

δ→1
max

n
|φ(δ)N (a)− φ

(δ)
N (b) | : a, b ∈ Z

o
= 0, where φ

(δ)
N (·) =P

i∈S φ
(δ)
i (·) is the aggregate equilibrium payoffs associated with any equilibrium σ(δ) of the economy

E (→, v, p, δ) .
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Certainly, the aggregate level of efficiency are the same at all states in the same

ergodic class. The level of efficiency of an ergodic set is given by the weighted average of

the aggregate payoffs of the states in the ergodic set, where the weights are given by the

frequency of time the economy spends in each state (the invariant probability measure).

However, a priori it could be that two different ergodic sets may have different levels

of efficiency. This possibility though is ruled out by Proposition 4. Intuitively, if there

were two ergodic sets with two different aggregate welfare levels there would be at least

one player who would be able to benefit from a move from the less efficient ergodic

set to the more efficient ergodic set (see Lemma 1 in the Appendix). Thus, this player

would link the two ergodic sets by his move, which means that the two ergodic sets

would have to be in fact a single ergodic set (a contradiction). The rest of the argument

consists in observing that when players are very patient the aggregate welfare at any

transient state depends only on the aggregate welfare at ergodic sets because the system

moves in a finite number of steps to an ergodic set, and so the utility flows at transient

states are negligible (irrelevant in the limit of arbitrarily patient players).

Our next result shows that while multiple ergodic classes are possible, generically,
37 any equilibrium has only one ergodic class whenever players are sufficiently patient.

Thus, the long-run behavior of the dynamic process (not only the aggregate welfare)

is the same regardless of the initial state from which the system starts. And this

conclusion holds true whether the system converges to a single state or cycles between

several states.

Proposition 5 The long-run properties of economies E (→, v, p, δ) are not dependent

on the initial state, if players are patient enough. Formally, for generic economies

there exists δ < 1 such that if δ ≥ δ all equilibria have only one stable set.

The intuition for Proposition 5 is roughly as follows. Suppose there is a sequence

(as δ tends to 1) of equilibria of the economy with discount factor δ such that every

equilibrium has two ergodic sets E and E0. The equilibrium transitions governing the

states in E (resp. E0) solely depend on the payoff (and transition structure) in states

in E (resp. E0). And so do the limit of these equilibrium transitions as δ goes to 1.

37Except in a subset of the set of payoffs v ∈ Rn.|Z| of Lesbegue measure zero .
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But, by Proposition 4, the limit of the aggregate value in ergodic set E must be the

same as in ergodic set E0. This cannot hold generically because if say one modifies

only the payoffs in states in E, the aggregate welfare will not change in E0 while it will

in E, violating the equal welfare property. Thus Proposition 5 must hold.

Proposition 5 has important implications, since it shows that there is no point (for

long run considerations) of re-initializing the process to another state if one is to main-

tain the structure of transitions unchanged. For example, in exchange economies with

transferable utilities (with or without externalities), this result implies that the initial

allocation of property rights plays no role in the long run allocation of goods. And so

policies that would consist in reallocating the goods initially would have no effect on

the long run properties of the economy.38

Remark : It should be noted that Proposition 5 (and also Proposition 4) assumes

that players are sufficiently patient. When players are not patient enough there may

be equilibria with multiple stable sets (with different associated aggregate welfare).39

5.2 Efficient-negative-externality-free States

What are the efficiency and stability properties of equilibria? We will show that the

answer depends upon whether or not there exists an efficient-negative-externality-free

state (ENF), a key concept introduced in the paper. In short, an efficient state is an

ENF state if any group of agents that can move the economy to another state (possibly

in several steps) cannot impose in the process negative externalities on players that

have been excluded from the move. When we require robustness with respect to the

(possibly state-dependent) probabilities that the various players are selected to make

38Such a result is reminiscent of Coase (1960) and can be viewed as a significant extension of
Jehiel-Moldovanu (1999) to the multi-object case (with externalities) and infinite-horizon bargaining
contexts.
39For example, consider a voting problem where three legislators have the following utility with

respect to four policy choices (players have equal probability of being proposers): v(a) = (1.5, 1, 0),

v(b) = (1, 0, 1.5), v(c) = (0, 1.5, 1), and v(d) = (1, 1, 1). Any of the policies a, b, or c can be approved
and changed by a simple majority (at least two legislators), and policy d requires unanimity to be
approved and changed. In this Example there are two stable sets for all discount rate δ < 0.75:
{a, b, c} and {d}.
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proposals, the existence of an ENF state is a necessary and sufficient condition for

efficiency and stability.

The precise definition of efficient-negative-externality-free state follows below:

Definition 3 (i) A state a of the v-economy E(→, v) is negative-externality-free if and

only if for all players i ∈ N and moves a →S1 a1 → · · · →Sn an = b by subcoalitions

Sk ⊂ N\i (excluding player i) then vi(b) ≥ vi(a). (ii) A state is an efficient-negative-

externality-free state (ENF) if and only if it is efficient and is negative-externality-

free.40

So, according to our definition, a state a is free of negative externalities if no group

S that can implement a move from a to b (possibly in several steps), can reduce the

flow of payoffs of players outside S (i.e., vi(b) ≥ vi(a) for all i /∈ S). Efficient-negative-

externality-free states are those states that are both efficient and free of negative exter-

nalities.41 Observe that the requirement of unanimous consent to move away from one

efficient state implies the existence of an ENF state. So does the absence of (negative)

externalities in coalition formation bargaining games or in exchange economies (see the

application section).

Our first result of this Section establishes the stability of ENF states regardless

of the patience of the players and, in addition, that economies with an ENF state

are asymptotically efficient in the sense that, for very patient players, the system

stabilizes to states that are efficient in the long run (after a number of possible transitory

moves).42 Note that asymptotic efficiency should be contrasted with strong efficiency

which requires that starting from any given state there is an immediate move to an

40It is worth pointing out that we cannot weaken the definition of ENF to consider only states that
are reachable in a one step deviation instead of multiple steps, if we wish to guarantee stability (i.e.,
an efficient state a such that for all a →S b then vi (b) ≥ vi (a) for all i /∈ S may not be stable).
The following example illustrates this point: N = {1, 2, 3} , Z = {a, b, c} , and v(a) = (0, 0, 3) ,

v(b) = (−1,−1, 4) , v(c) = (1, 1, 0) and a→12 b , b→12 c, and c→123 a. The unique efficient state is
not stable, and the system cycles over all states.
41If one adds a transitivity axiom (i.e. for any three states b, c, d and coalition S, b →S c and

c →S d imply that b →S d), then the definition can be simplified to consider only direct transitions
from a to b.
42Formally, a (→, v, p)-economy E(→, v, p) is asymptotically efficient if and only if lim

δ→1
φ
(δ)
N (a) =

max
b∈Z

vN (b) for any equilibrium σ(δ) of the economy E (→, v, p, δ) and any state a ∈ Z.
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efficient state.43 But, whenever players are very patient, the potential loss induced by

asymptotic efficiency relative to strong efficiency is very small (it vanishes to zero as

players get infinitely patient). So asymptotic efficiency is the economically relevant

measure of efficiency when considering arbitrarily patient players.

Proposition 6 (i)(Stability) All efficient-negative-externality-free states of E(→, v)

are stable states of any equilibrium of E(→, v, δ, p), for all p and δ.

(ii)(Efficiency) Moreover, if there exists at least one efficient-negative-externality-free

state of E(→, v) (i.e. ENF 6= ∅) then all (→, v, p)-economies E(→, v, p) are asymptot-

ically efficient.

Note first that since a stable state is one where the economy stays forever, then it

must be the case that φi(a
∗) = vi(a

∗) for all i ∈ N and a∗ stable. Moreover, a necessary

condition for stability of state a∗ is that the inequalities

vS (a
∗) ≥ xS (b) = δφS (b) + (1− δ) vS (b) . (5)

hold for all feasible moves a∗ →S b (for all S ⊂ N and states b ∈ Z), which ensures

that no deviation away from the stable state is profitable.

The stability of an ENF state a arises because any move away from state a, say

a→S b, is not profitable for coalition S (i.e., the excess xS(b)− xS(a) ≤ 0): given that
a is negative-externality-free, coalition S cannot impose any negative externality on

players in N\S, once the process is at state a; and given that a is efficient, coalition
S cannot make any improvements, since all players in N\S can only benefit from any

move that coalition S makes, and a is already an efficient state.

The existence of an efficient-negative-externality-free state is also a sufficient con-

dition for asymptotic efficiency. This is so because according to Proposition 4, the

aggregate equilibrium value must be the same at all states. But, if there exists an ENF

state - which by Proposition 6(i) must be stable - then in any equilibrium the aggregate

welfare at the ENF state is the Pareto efficient level. Therefore, the aggregate value at

any other state must also be asymptotically close to the Pareto efficient level.

43Strong efficiency has been shown to obtain whenever long-term contracts are available or general
spot contracts are available while the approached agents cannot collude.
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Naturally, since economies without negative externalities and/or economies such

that the efficient state can only be left with unanimous consent have ENF states, such

economies must converge in a finite number of steps to the efficient state and remain

there thereafter. Proposition 6 has several practical implications. For example, it can

be used to establish asymptotic efficiency in exchange economies without externalities

(see subsection 3.3), which is reminiscent of Gale (1986), and in coalitional bargaining

games with characteristic function forms (see subsection 3.2). In addition, it can be

used to establish asymptotic efficiency in coalitional bargaining games with externalities

or legislative bargaining where the grand coalition is efficient (see Gomes 2003) or

unanimity is required to change the efficient policy.

Proposition 6 has established that the existence of an ENF state is sufficient to

guarantee the convergence to an efficient state when players are sufficiently patient.

But, is the existence of an ENF state necessary ? When we require robustness with

respect to the (possibly state-dependent) probabilities that the various players are

selected to make proposals, the existence of an efficient-negative-externality-free state

is also a necessary condition for stability and asymptotic efficiency. More precisely, we

have:

Proposition 7 (i)(Stability) Any state of E(→, v) that is not negative-externality-free

is not a stable state of E(→, v, δ, p) for δ close to one and for some proposers’ proba-

bilities p.

(ii)(Efficiency) Moreover, any economy E(→, v) without any efficient-negative-externality-

free states is such that there exist (an open set of) proposers’ probabilities p such that

E(→, v0, δ, p) is not asymptotically efficient, for almost all v0 in a neighborhood of v.

If there is no negative-externality-free state then from any state a there is a move

by coalition S (possibly in several steps) to another state b such that player i /∈ S ’s

flow of payoff is lower at state b than at state a. Proposition 7(i) shows that in such

a situation any given state a is not stable for some specifications of p. Intuitively,

instability of a will occur when the probabilities that player i is the proposer at state

b is sufficiently small. Under such circumstances, state a will not be stable because

coalition S would rather leave state a to move to state b in order to exploit the weak
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bargaining position of player i at state b. In a similar vein, Proposition 7(ii) shows

that the existence of an ENF state is required for asymptotic efficiency to obtain

(irrespective of proposers’ probabilities). This is because if the efficient state is not

negative-externality-free, Proposition 7(i) shows that it can be destabilized for some

specifications of proposers’ probabilities. Hence, asymptotic efficiency cannot obtain

for such proposers’ probabilities.44

It is important to observe that Proposition 7 does not rule out the possibility that

the economy converges to an inefficient state or to an efficient state that is not negative-

externality-free.45 But, when there is no ENF state and players are patient enough,

inefficiencies and cycles must occur at least for some specifications of the proposers’

probabilities.

To summarize, inefficiencies and instabilities are driven by negative externalities

that can be imposed on players from the efficient state, and moves to (inefficient) states

that may enhance a player’s bargaining position at the cost of inducing inefficiencies

or distortions in the allocation of resources. However, as we have demonstrated in

Proposition 6 the bargaining power of players create no distortions if there exists at

least one ENF state.

Our analysis was mostly focused on the case of very patient players. When players

are myopic a key concept well studied in the cooperative game literature is that of

core defined as the set of states a such that for all coalitions S ⊂ N and states b ∈ Z

with a→S b then vS(a) ≥ vS(b).
46 Observe that the conditions for stability expressed

44Observe that in Proposition 7 it is important to consider perturbations of the payoff. For example,
if all states of the economy are efficient, then even though there may be no ENF state, the economy
is certainly (trivially) asymptotically efficient.
45See the exchange economy example developed in subsection 3.3 in which we get convergence to

an inefficient state.
46Even though our definition of core corresponds to the classical concept, the application of the

concept to coalitional bargaining games leads to some notable differences. For example, in our formu-
lation the core of a superadditive characteristic function game is always non-empty (it is equal to the
grand coalition state), while under the standard interpretation it is sometimes empty. The distinction
comes not from the concept of core per se but from the transition relation that specifies the possible
moves by coalitions. Implicit in the cooperative interpretation, is the view that a subcoalition can
break-up from a coalition without the consent of the players left behind (see also discussion in Section
3.2). But this view is inconsistent with the idea that once players have agreed to form a coalition
it cannot be re-organized without the consent of all players in the coalition. We believe that in an
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in inequalities (5) are the same as the conditions for the core when δ is set equal

to zero, i.e. with myopic players. However, non-myopic or farsighted players when

considering deviations from a state, put weight δ on the expected equilibrium value

(which incorporates the expected value of all future payoffs) of the deviant coalition in

the new state, as opposed to putting all the weight on the coalitional value in the new

state (which is the case in the definition of the core).

In a myopic economy, there is an intimate relationship between stable states and

the core (in particular, all stable states of the economy E(→, v, 0, p) are contained

in the core). Our analysis has demonstrated that in farsighted economies stability is

better captured by the concept of ENF. Thus, the ENF concept plays a similar role

for economies with very patient players as the core for economies with very impatient

or myopic players.

6 Conclusion

The main lessons of the paper are as follows. Whenever agents are unable to commit

to actions to be made at future stage (but are otherwise unconstrained both in their

ability to propose arbitrary spot contracts and in their ability to react jointly to a

proposed contract), long-run efficiency is not guaranteed. Agents constantly try to

improve their bargaining position vis a vis other agents, and this may be a source

of instability and inefficiency. But, when the efficient state is negative-externality-

free (in the sense that if a coalition can move away from the efficient state to some

alternative state without the consent of some agent then this agent should get a flow

of payoff at least as large in the new state than in the efficient state) then the search

for better bargaining positions is not a source of inefficiency, and convergence to the

efficient state must arise if players are patient enough, in a finite number of steps.

Furthermore, we also find that when there are long-run inefficiencies changing the

initial state has no effect if players are sufficiently patient. It is thus more important

to design transitions guaranteeing the existence of an efficient-negative-externality-free

explicit dynamic setup in which players have agreed to form the grand coalition it makes more sense
(at least in some contexts) to assume that breaking that grand coalition apart requires the consent of
all players.
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state than to implement a fine initialization of the process.
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Appendix: Proof of Propositions

Proof of Proposition 1: The necessary part of the characterization follows di-

rectly from the discussion before the statement of the result and the definition of MPE

solution. The sufficient part of the characterization follows from the discussion and

the use the one-stage deviation principle for infinite-horizon games. This result states

that in any infinite-horizon game with observed actions that is continuous at infinity, a

strategy profile σ is subgame perfect if and only if there is no player i and strategy σ0i
that agrees with σi except at a single stage t of the game and history ht, such that σ0i is

a better response to σ−i than σi conditional on history ht being reached (see Fudenberg

and Tirole (1991)).

To prove the existence, let the map f : Rd ×Σ→ Rd be defined as

fi(a)(x, σ) = (1− δ)vi (a) +

+δ

Ã
pi(a)

P
(b,S) σi (a) (S, b)

³P
j∈S (xj(b)− xj(a))

´
+

+
P

j∈N pj(a)
P

(b,S) σj (a) (S, b) (I(i ∈ S)xi(a) + I(i /∈ S)xi(b))

!
,

for (x, σ) ∈ Rd × Σ. Consider the set

Σi(a) = {(S, b) : where a→S b and i ∈ S}

and σi (a) ∈ ∆Σi(a) be the set of probability distributions over Σi(a). Let

Σi = ×
a∈Z

Σi(a),

and Σ be the set of offering strategies for all player.

Let the correspondence F : Rd →→ Rd be defined as

F (x) = {f (x, σ) : σ ∈ Σ (x)} ,

where

Σ(x) = {σ ∈ Σ : supp (σ (i, a)) ⊂ argmax
(b,S)

{e (a) (S, b) (x) : a→S b and i ∈ S} .

According to proposition 1 a payoff x ∈ Rd is a MPE if and only if x is a fixed point

of F.
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(1) Let X ⊂ Rm be a compact and convex set defined where the coordinate

min
a∈Z

vi (a) ≤ xi (a) ≤ max
a∈Z

vN (a)−
X
j∈N

min
a∈Z

vj (a)

and X = ×i∈NIi. It is immediate that F (X) ⊂ X.

(2) F (x) is a convex (and non-empty) set for all x ∈ X: Say that z, z0 ∈ F (x)

with z = f(x, σ) and z0 = f(x, σ0) where σ, σ0 ∈ Σ(x). Then, for any λ ∈ [0, 1] ,
λz+(1− λ) z0 = f(x, λσ+ (1− λ) σ0) ∈ F (x) because λσ+ (1− λ)σ0 ∈ Σ(x) (Σ(x) is

convex).

(3) F is u.h.c., that is, for any sequence (xn, f(xn, σn)) → (x, z) with σn ∈ Σ(xn)

then z ∈ F (x) (i.e., there exists an σ ∈ Σ(x) such that f(x, σ) = z). The sequence

(σn) belongs to Σ a compact subset of a finite-dimension Euclidean space. Therefore,

there exists a subsequence of (σnk) that converges to σ ∈ Σ. Rename this subsequence

as (σn) for notational simplicity. We have that σni (a) (b, S) → σ (i, a) (b, S), and that

f(xn, σn)→ f(x, σ), due to the continuity of y, and thus z = f(x, σ).

It is sufficient to show that σ ∈ Σ(x). By the definition of Σ(x), σ ∈ Σ(x) if and only

if σ ∈ Σ and σi (a) (b, S) = 0 for all (b, S) such that xS(b)−xS(a) < max
(b,S)

{e (a) (S, b) (x) :
a →S b

and i ∈ S}. Consider any S ⊂ π for which the inequality above holds. By continuity,

we have that there exists a large enough n0 such that for all n ≥ n0, xnS(b)− xnS(a) <

max
(b,S)

{e (a) (S, b) (xn) : a →S b and i ∈ S}. But since σn ∈ Σ(xn), this implies that

σni (a) (b, S) = 0, and σi (a) (b, S) = 0.

Since all the conditions for the Kakutani fixed point theorem holds, the correspon-

dence F has a fixed point, which yields an MPE.

We present below some other basic properties of the equilibrium. Concatenating (1),

(3) and (4), the expected payoffs xi(a) must satisfy the following system of equations:

xi(a) = (1− δ) vi (a)+δpi(a)ei (a)+δ
X
j∈N

pj(a)
X
(S,b)

σj (a) (S, b) (I(i ∈ S)xi(a) + I(i /∈ S)xi(b)) ,

(6)

where ei (a) is the gain or excess of proposer i at state a,

ei (a) = max
(b,S)

(X
j∈S

(xj(b)− xj(a)) : a→S b and i ∈ S

)
. (7)
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Our assumptions directly imply some other simple properties for the equilibrium.

For example, by Assumption A1 any player can always decide to stay in the same state,

and thus the excess is always positive. Moreover, by Assumption A2, it must be that

if player i finds it optimal at state a to approach coalition S and propose a move to

state b, i.e. if σi (a) (S, b) > 0, then agents outside S should be no worse off in state a

than in state b, i.e. xj(b) ≤ xj(a) for all j /∈ S. Q.E.D.

Proof of voting example: We rely on proposition 1 to construct the equilib-

rium. Consider the strategy profile below, where the payoffs xi(s) are given by equation

(8). At state a: player 1 proposes to player 3 to move to state b offering him x3(b);

player 2 proposes to player 3 to move to state c offering him x3(c), and player 3 pro-

poses to player 2 to move to state c offering him x2(c). Use symmetric strategies at

the other states b and c. At state d: 1 proposes to 2 to move to state a offering x2(a);

2 proposes to 3 to move to c offering x3(c), and 3 proposes to 1 to move to b offering

x1(b).

Due to the symmetry of the problem we let x1 = x1(a) = x2(c) = x3(b) and

x2 = x2(a) = x1(b) = x3(c) and x3 = x3(a) = x2(b) = x1(c). Equations (6) became

x1 = (1− δ) v1(a) + δ
e1
3
+

δ

3
(x1 + 2x3) ,

x2 = (1− δ) v2(a) + δ
e2
3
+

δ

3
(2x2 + x3) , (8)

x3 = (1− δ) v3(a) + δ
e2
3
+

δ

3
(3x3) ,

and the excesses are e1 = (x1 + x2)− (x1 + x3) and e2 = (x1 + x2)− (x2 + x3). Solving

for the linear system of equations yields the solution (for δ = 0.9) equal to x1 = 0.91,

x2 = 0.925, x1 = 0.675, e1 = 0.25 and e2 = 0.225. The equilibrium at state d is given

by x = xi(d) = 0.91 and e = 0.005 solution of x = (1− δ) vi(d) + δ
¡
e
3
+ 1

3
(2x+ x3)

¢
,

where e = (x1 + x2)− 2x. It can be readily checked that there are no profitable devia-
tions and thus the payoff system satisfies condition (ii) of proposition (1), which proves

that the strategy profile is a MPE. Q.E.D.

Proof of Proposition 2:
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We first note that any spot contract can be represented, without any loss of gen-

erality, as a direct mechanism in which agents respond whether they accept or reject

the spot contract. Of course, the contract needs to be feasible, that is, voluntary, and

satisfy the constraints imposed by the transition rule. Formally,

Definition 4 The offer τ by player i at state a is a feasible spot contract or mech-

anism, if τ = (S, z, t) where z : 2S → Z are response-contingent allocations and

t : 2S → RS are response-contingent transfers, such that for all subset of players ac-

cepting the offer A ⊂ S then a→A z (A) and tj (A) = 0 for all j /∈ S\A.

The extensive form of the dynamic economy where general spot contracts are al-

lowed is similar to the model in Section 2, except for the more general offers. Upon the

offer τ = (S, z, t) being made, the agents in S respond to the offer by yes or no.47 If

the offer is accepted by A ⊂ S then the economy moves to the next period with state

z (A) and the (lump-sum) transfers t (A) are made among agents in A. Of course, an

agent who refuses the contract cannot be forced to pay a transfer, hence tj (A) = 0 for

all j /∈ S\A.
Any MPE σ of an economy with general spot contracts with continuation value

xi (a) satisfies: proposer i at state a offers τ = (N, z, t) such that z (N\j) ∈ argmin{xj(σ|b) :
a →N\j b} and z (N) ∈ argmax{Pj∈N xj(σ|b) : a →N b}, and transfer tj(N) +

xj(σ|z (N)) = xj(σ|z (N\j)) for all j 6= i and all responders accept offer τ .

When player i is responder his value is φRi (a) = min{xi(b) : a→N\i b} and when he
is proposer his value is φPi (a) = max{

P
j∈N xj(b) : a→N b}−Pj 6=imin{xj(b) : a→N\j

b}. Moreover, the equilibrium value satisfies φi (a) =
¡
pi(a)φ

P
i (a) + (1− pi(a))φ

R
i (a)

¢
.

Concatenating these expressions imply that the expected payoffs xi(a) must satisfy the

following system of equations:

xi (a) = (1− δ) vi(a) + δmin{xi(b) : a→N\i b}+ (9)

+δpi(a)

Ã
max{xN(b) : a→N b}−

X
j∈N

min{xj(b) : a→N\j b}
!
. (10)

47To simplify the presentation, we may assume that agents respond simultaneously, and we restrict
attention to equilibria in undominated strategies (to avoid coordination problems).
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The maximum from any state a, max{xN(b) : a→N b}, satisfies max{xN(b) : a→N

b} = max{xN(a) : a ∈ Z}, and does not depend on the initial state, because by
assumption A3 all states Z = {b ∈ Z, a→N b}. Let x∗ = max{xN(a) : a ∈ Z}. Adding
up all the equations (9) above yields that the aggregate value is equal to xN(a) =

(1− δ) vN(a) + δx∗. But then x∗ = max{xN(a) : a ∈ Z} = (1− δ)max{vN(a) : a ∈
Z}+ δx∗ which implies that x∗ = max{vN(a) : a ∈ Z}.
The strategy of players is, from any state, to move to the state that maximizes

max{xN(a) : a ∈ Z}. But since this maximum attains the efficient amountmax{vN(a) :
a ∈ Z} this implies that, from any state we move to the efficient allocation. Q.E.D.

Proof of proposition 3: Given a MPE σ of the simple offer contract game,

define the following strategy profile σc of the spot contract+collusion game: proposers

make an offer τ = (S, z, t) with z(S) = b and tj(S) = xj(σ|a) − xj(σ|b), and z(A) =

a and tj(A) = 0 for all A 6= S with probability σi(a) (S, b) > 0; given any offer

τ = (S, z, t), the third party coordinates the acceptance by the subset A ⊂ S that

maximizes maxA⊂S{
P

j∈S\{i} xj(σ|z(A)) + tj(z(A))}.
By construction, the strategy σc is equivalent to the strategy σ (the continuation

values xj(σ|a) = xj(σc|a) = xj(a) and transitions induced by both strategies are the

same). So it remains to show that σc is a MPE: i) The proposer i cannot do strictly

better. Indeed the possibility of collusion means that the set of approached agents

S\{i} can always by all refusing the contract guarantee a payoff equal toPj∈S\{i} xj(a)

since i would then be forced to stay in state a, by assumption A4. So if all agents S

agree to the contract specifying a move to say state b where a →S b then i’s payoff

must be bounded by
P

j∈S xj(b)−
P

j∈S\{i} xj(a). But, this is exactly the payoff that

i gets when offering τ = (S, z, t); ii) The third party strategy, by definition, is a best

response. So this proves that σc is an equivalent MPE. The converse part follows along

the same line.

To simplify exposition we have assumed that the collusive ring could be organized

by a third benevolent part. Note that our insight would carry over if the collusive ring

was instead organized by third parties interested in making money, and some compe-

tition among third parties would allow the ring to retain some of the surplus. (The
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proof above shows that the proposer is best by offering contracts that do not allow

the approached members to collude. This conclusion would hold true also under the

alternative specification just suggested.) Q.E.D.

Proof of Proposition 4: Suppose by contradiction that there exists a sub-

sequence δn → 1 such that lim
δn→1

max |φ(δn)N (a) − φ
(δn)
N (b) | : a, b ∈ Z} > 0, where

µ(δn) and φ(δn) are the equilibrium transition probabilities and payoffs. Now, con-

sider a convergent subsequence of δn such that µ(δn) → µ and φ(δn) → φ (of course,

max
a,b∈Z

|φN (a)− φN (b) | > 0).
The aggregate value φ(δ)N (·) satisfies

φ
(δ)
N (a) =

X
b

µ(δ) (a, b)
h
(1− δ) vN(b) + δφ

(δ)
N (b)

i
, for all a ∈ Z,

which is equivalent to £
I − δµ(δ)

¤
φ
(δ)
N = (1− δ)µ(δ)vN . (11)

Taking the limit when δ → 1 we have,

[I − µ]φN = 0. (12)

Let E1, · · · , Em be the ergodic classes and T ⊂ Z the class of transient states of the

limit transition probability µ (Z = E1 ∪ · · · ∪ Em ∪ T ). Equation (12) is equivalent to
φN = µφN and thus φN is an (right) eigenvector of µ corresponding to the eigenvalue

1. A well-known result from the theory of Markov chains (see Doob (1953)) implies

that φN (·) is a constant within each ergodic class Ej and that the value of φN (·) at
any transient state is a linear combination of the values of φN (·) at the ergodic states.

Lemma 8 Consider an equilibrium strategy profile σ(δ) of E (→, v, p, δ) such that the

equilibrium transition probabilities and payoffs µ(δ) and φ(δ) are such that µ(δ) → µ and

φ(δ) → φ, as δ → 1, and let E ⊂ Z be a stable set of µ. Consider a player i who can

be the proposer with positive probability at some state in E. Then there exists a state

a∗ ∈ E such that pi(a∗) > 0 and i’s excess at a∗ converges to zero, i.e., lim
δ→1

e
(δ)
i (a

∗) = 0.
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Proof of Lemma 8: Let ei(a) = lim
δ→1

e
(δ)
i (a). Taking the limit of the expressions

in equation (6) we have that

xi(a) = pi(a)ei(a) +
X
(S,b)

µ (a, b, S) (I(i ∈ S)xi(a) + I(i /∈ S)xi(b)) (13)

where µ (a, b, S) =
P

j∈N pj (a)σj (a) (S, b). We have already seen that xi(b) ≤ xi(a)

for all b ∈ Z such that µ (a, b, S) > 0 and i /∈ S (see remarks after the statement of

Proposition 1).

Let player i be a proposer with positive probability in at least one state in E (i.e,

pi(a
0) > 0 for some a0 ∈ E). Let x be the limit solution and µ the limit transition

probability. For any player i let a be a state where the min{
a0∈E

xi(a
0)} is attained (

xi(a) = min{
a0∈E

xi(a
0)}) and thus µ (a, b, S) > 0 implies that xi(b) ≥ xi(a) (because E is

a closed class, and µ (a, b, S) > 0 and a ∈ E implies that b ∈ E).

Suppose that pi(a) > 0. Applying equation (13) to state a, and taking into account

that
P

(S,b) µ (a, b, S) = 1, we get that

xi(a) = pi(a)ei(a) + xi(a), (14)

which implies ei(a) = 0, since pi(a) > 0.

Now if pi(a) = 0, then any state b such that µ (a, b, S) > 0 is also such that xi(b) =

min{
a0∈E

xi(a
0)} (this is so because xi(b) ≤ xi(a) for all b ∈ Z such that µ (a, b, S) > 0).

Thus, one can find a state a∗ such that xi(a∗) = min{
a0∈E

xi(a
0)} and pi(a

∗) > 0, and use

the same argument above to this state. Q.E.D.

So by Lemma 8 there a exists state aj in each ergodic class Ej such that the excess

e
(δn)
i (aj) of player i at state aj converges to zero: e

(δn)
i (aj)→ 0, for all j = 1, ...,m.

We now show that the values of φN (·) across ergodic classes are equal: say that
there are two ergodic classes Ej and Ek such that φN (aj) < φN (ak) . But since it is

feasible for player i to move from state aj to state ak with the agreement of all players

N then lim sup
δn→1

e
(δn)
i (aj) ≥ φN (ak) − φN (aj) > 0 (contradiction). Also, because the

value of φN (·) at transient states is a linear combination of the values at ergodic states,
then we conclude that φN (·) is constant across all states in Z. Finally, this leads to a
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contradiction with max
a,b∈Z

|φN (a)− φN (b) | > 0, completing the proof. Q.E.D.

Proof of Proposition 5: Suppose by contradiction that there is a sequence of

δn converging to one (δn → 1) with equilibrium transition probability µ(δ) and payoff

φ(δ) having two ergodic classes E(δ)
1 and E

(δ)
2 with invariant probabilities λ(δ)1 and λ

(δ)
2

(given by λ(δ)i µ(δ) = λ
(δ)
i and

P
a0∈E(δ)i

λ
(δ)
i (a

0) = 1). Consider a convergent subsequence

of δn (also named δn) such that µ(δn) → µ, φ(δn) → φ, λ(δn)i → λi, and Ei = E
(δn)
i .

Multiplying equation (11) to the left by λ(δ)i yields,

λ
(δ)
i

£
I − δµ(δ)

¤
φ
(δ)
N = λ

(δ)
i (1− δ)µ(δ)vN , (15)

which is equivalent to (1− δ)λ
(δ)
i φ

(δ)
N = λ

(δ)
i (1− δ)µ(δ)vN , (after taking into account

that λ(δ)i µ(δ) = λ
(δ)
i ), and thus,

λ
(δ)
i φ

(δ)
N = λ

(δ)
i µ(δ)vN .

Taking the limit of the above expression (using λiµ = λi), we have

λiφN = λiµvN = λivN .

But Proposition 4 implies that φN (·) is constant over Z, and thus

λ1vN =
X
a0∈E2

λi (a
0) vN (a0) =

X
a0∈E2

λi (a
0) vN (a0) = λ2vN . (16)

Finally, the equality λ1vN = λ2vN cannot be satisfied generically: The two ergodic

classes are disjoint E1 ∩ E2 = ∅ and the invariant measures λi only depend on the
payoffs v(a) for a ∈ Ei. If equality (16) happened to be satisfied for some choice of

parameters, changing slightly the payoffs in one of the classes (say by adding an ε to

the payoff of a player in one of the classes) would lead to violation of the equality.

Q.E.D.

Proof of Proposition 6: (Stability) Let a∗ ∈ ENF . We claim that φi(a
∗) =

vi(a
∗) for all i ∈ N. Indeed any player i can get an utility level at least equal to vi(a∗)

if he does not make any proposals and if he does not accept any proposals (whenever
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a∗ →S1 · · · →Sk ak → · · · →Sn an and i /∈ Sk then vi (an) ≥ vi (a
∗)). Therefore,

φi(a
∗) ≥ vi(a

∗). But a∗ is also efficient, and so vN(a
∗) = max

a∈Z
vN(a), which together

imply φi(a
∗) = vi(a

∗).

We now show that any move a∗ →S b by coalition S yields non-positive excess,

where the excess associated with the move is e = xS(b)− xS(a
∗), which is sufficient to

prove that a is an stable state.

Efficiency of a∗ implies that vN(a∗) ≥ vN (b) and vN(a
∗) ≥ φN (b) for all b ∈ Z.

Moreover, if a∗ →S b, then φN\S(b) ≥ vN\S(a∗) (this comes from the definition of ENF).

Concatenating the inequalities yields that e = xS(b) − xS(a
∗) = δ (φS(b)− φS(a

∗)) +

(1− δ) (vS(b)− vS(a
∗)) ≤ 0 (because φS(b)−φS(a∗) ≤ (φS(b)− φS(a

∗))+
¡
φN\S(b)− vN\S(a∗)

¢
=

φN(b)− vN(a
∗) ≤ 0 and also it is easy to see that vS(b)− vS(a) ≤ 0).

(Efficiency) Let a∗ be an absorbing state. Then ei(a∗) = 0 for all i, and because

µ(a∗, a∗) = 1 equation (6) correspond to

xi(a
∗) = δxi(a

∗) + (1− δ) vi (a
∗) .

Thus xi(a∗) = vi (a
∗) , and φN(a

∗) = xN(a
∗) = vN(a

∗). Since a∗ is an efficient state

then φN(a
∗) = max

a∈Z
vN(a). The result now follows from Proposition 4. Q.E.D.

Proof of Proposition 7: (Stability) Consider any state a that is not negative-

externality-free. Naturally, there exists a sequence a = a0 →N\i a1 → · · · aq−1 →N\i

aq = b of moves such that vi(b) < vi(a). Consider now a proposer probability p satisfying

(or approximately satisfying) pj(ak) = 1 for some j ∈ N\i and all k = 1, ..., q − 1, and
pi(b) = 0.

Suppose by contradiction that there exists a sequence of equilibria σ(δ) of E(→
, v, p, δ) with δ converging to one, such that φ(δ) → φ (and x(δ) → x) and state a is an

stable state for any δ in the sequence. We claim that a cannot be an stable state of

σ(δ) for some δ.

The stability of a implies that φl(a) = vl(a) for all l ∈ N (and x = limδ→1 x(δ) satisfies

x = φ). Consider the following deviation from the equilibrium strategy by player j :

propose to move ak →N\i ak+1 for all k = 0, ..., q−1 offering each player l ∈ N\{i, j} a
transfer tl such that tl+xl(ak+1) = xl(ak)+ε, where ε > 0. The best response strategy
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of all players l are to accept such offers. The deviation produces a (limit) gain to player

j, with respect to the no deviation strategy, of G = [xN\i(b)−xN\i(a)]+O(1−δ, ε). But,
because player i is not a proposer at b then i’s excess at b is zero, and equation 6 implies

that φi(b) ≤ vi(b). Moreover, Proposition 4 implies that vN(a) = φN(a) = φN(b) and

thus G = φN(b)−φN(b)+xi(a)−xi(b)+O(1− δ, ε) is no smaller than vi(a)−vi(b) > 0
for δ close enough to zero and ε sufficiently small, which leads to a contradiction.

(Efficiency) Consider any small perturbation v0 of the payoff v such that the

new payoff v0 has only one efficient state, say a. Of course, for any small enough

perturbation, a is also an efficient state of E(v), and since a /∈ ENF (v) then there

must exist a player i and a sequence a = a0 →N\i a1 → · · · aq−1 →N\i aq = b of moves

such that vi(b) < vi(a). Note that any small perturbation also satisfies v0i(b) < v0i(a)

and v0N(b) < v0N(a) (a is the only efficient state of E(→ v0)). Consider now any proposer

probability p chosen as in the previous paragraph.

We claim that economy E(→, v0, p) is not asymptotically efficient. Suppose to the

contrary that it is asymptotically efficient, so that any sequence σ(δ) with φ(δ) → φ

and µ(δ) → µ the payoffs satisfy φN(·) = φN(a) = v0N(a) = max
a0∈Z

v0N(a
0). Since a is the

only efficient state of E(→, v0) then µ (a, a) = 1 and φl(a) = v0l(a) for all l ∈ N. An

argument similar to the one used above (applied to state a which is also not negative-

externality-free) now yields a contradiction. Q.E.D.
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Figure 1: Voting game equilibrium values (in parentheses) and transition probabil-

ities (percentages).

Figure 2: Coalitioanal bargaining game equilibrium values (in parentheses) and

transition probabilities (percentages).

Figure 3: Exchange economy equilibrium values (in parentheses) and transition

probabilities (percentages).
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