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I define the largest consistent set, a solution concept which applies to situations
in which coalitions freely form but cannot make binding contracts, act publicly, and
are fully “farsighted” in that a coalition considers the possibility that, once it acts,
another coalition might react, a third coalition might in turn react, and so on,
without limit. I establish weak nonemptiness conditions and apply it to strategic
and coalitional form games and majority rule voting. I argue that it improves on
the von Neumann-Morgenstern stable set as it is usually defined but is consistent
with a generalization of the stable set as in the theory of social situations. Journal
of Economic Literature Classification Numbers: C70, C71.  © 1994 Academic Press, Inc.

Two problems have occupied theories of strategic stability for nearly a
century or more. The problem of “myopia” is expressed in Fisher’s ([16];
see Scherer [46]) criticism of Cournot’s duopoly model: “No business man
assumes either that his rival’s output or price will remain constant.... On
the contrary, his whole thought is to forecast what move the rival will
make in response to one of his own.” The problem of emptiness is typified
by Condorcet’s ([14]; see Black [11]) “contradictory” case, in which each
of three candidates loses by majority rule to another. The core (Gillies [17])
assumes that a coalition will deviate regardless of possible further deviations
and is often empty.
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who discovered two mistakes in the penultimate version.
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The “largest consistent set” defined here solves these two problems
simultaneously: it takes “farsightedness” fully into account and is non-
emtpy in a wide range of environments. It applies to situations in which
coalitions freely form but cannot make binding contracts, act publicly, and
are fully “farsighted” in that a coalition considers the possibility that, once
it acts, another coalition might react, a third coalition might in turn react,
and so on, whithout limit.

The concept aims to be weak: not so good at picking out, but ruling out
with confidence. Like rationalizability (Bernheim [8], Pearce [37]), it
does not determine what will happen but what can possibly happen. Like
the von Neumann-Morgenstern [52] solution, also called the stable set, it
is not defined by conditions on individual outcomes but by a condition on
a set of outcomes. It improves on the stable set as it is usually defined but
is consistent with a generalization of the stable set as in the theory of social
situations (Greenberg [19]). I apply it to strategic form games, coalitional
form games, and majority rule voting.

MOTIVATION

To illustrate the problem of myopia, we can see how it applies to strong
Nash equilibrium (Aumann [3]), the analogue of the core in the context of
strategic form games. A strategy profile is a strong Nash equilibrium if no
set of players can jointly deviate and make all of its members better
off. For example, in the Prisoners’ Dilemma, the only Nash equilibrium,
(Defect, Defect), is not a strong Nash equilibrium since the two players
could deviate to (Cooperate, Cooperate) and both become better off
(Table I). The problem of myopia can be expressed in three ways. First,
strong Nash equilibrium assumes that players do not consider the future.
In the Prisoners’ Dilemma, (Defect, Defect) is ruled out because the players
see that (Cooperate, Cooperate) would be better. But they do not consider
what might happen once they actually decide to play (Cooperate, Cooperate).
Second, it involves dubious counterfactuals. The implicit assumption is that
if the players were to deviate to (Cooperate, Cooperate), there would be no
further deviations, an assumption which is unreasonable. Third, it is not
consistent. The outcome (Defect, Defect) is not a strong Nash equilibrium
because of the deviation to (Cooperate, Cooperate). But could this devia-
tion actually take place if (Cooperate, Cooperate) is itself not a strong
Nash equilibrium?

The bargaining set (Aumann and Maschler [6], Maschler [32]), deals
with this by going one step further, considering deviations from deviations
(“counterobjections™) as well as deviations (“objections”). But fully rational
players would surely consider deviations from deviations from deviations,
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TABLE 1

The Prisoners’ Dilemma

Cooperate Defect
Cooperate 3,3 0,4
Defect 4,0 L1

and so on. To fully address the problem of myopia, a solution concept
should allow players to look arbitrarily far ahead. In the context of exten-
sive form games, subgame perfect Nash equilibrium makes this assumption.
What would be the analogue of subgame perfect Nash equilibrium in other
contexts?

The stable set of von Neumann and Morgenstern [52] is defined to be
self-consistent. But all concepts based on stable sets, such as coalition-proof
Nash equilibrium (Bernheim et al. [91]), are subject to a criticism made by
Harsanyi [21]. In stable sets, a deviation is invalidated if there is a further
deviation to some stable outcome. But a coalition might deviate knowing
full well that there will be a further deviation; it might like the further
deviation even better. The largest consistent set defined here incorporates
this insight.

DEFINITION OF THE GAME

A game I is defined as I'=(N, Z, {<,},cn» {—s}sc v s z), Where N is
the set of players, Z is the set of outcomes (N and Z are nonempty), {<;}
are the players’ strong preference relations defined on Z, and {—} are
“effectiveness relations” defined on Z. The relation — represents what
coalition S can do: a — ¢ b means that if ¢ is the status quo, coalition .S can
make b the new status quo. It does not mean that coalition S can enforce
b no matter what anyone else does; after S “moves to” b from «, another
coalition T might move to ¢, where b — ,¢. No restrictions are placed on
the effectiveness relations {— s}: — 5 can be empty, a — 5 a is possible, and
a — ¢ b need not imply b — 5 a. This way of defining a game is similar to but
less general than Rosenthal’s [417 “effectiveness form” and Greenberg's
[19] “inducement correspondence” (see also Moulin and Peleg [36] and
Wilson [56]).

This game is “played” in the following manner. When the game begins (in
fact at any given time) there is a status quo outcome, say a. If the members
of a coalition S decide to change the status quo to outcome b, where
a — 5 b, then the new status quo becomes b. This changing of the status quo
we call a coalition’s “move” or “deviation” “from” a “to” 6. From this new
status quo b, other coalitions might move, and so forth, without limit. All
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actions are public. If a status quo ¢ is reached and no coalition decides to
move from ¢, then c is a “stable” outcome and the game is over; then (and
only then) the players receive their payofls from ¢. Finally, there are no
time preferences: players care only about the end outcome and not how
many moves it takes to get there.

This game definition is of a cooperative and not noncooperative spirit in
that many details are left out. From a status quo a, typically many different
coalitions will be able to move from a. Coalitions do not move in a
specified order: it is not the case that first a particular coalition §, gets to
move from a, and if it does not move, then a particular coalition S, gets
to move from a, and so on. The game well specifies what happens if coali-
tion S, moves from a to b but not what happens if it does not move
(although it does clearly specify what happens if no coalition moves from
a). Issues such as preemptory moves (coalition S, moving from a to b to
prevent coalition S, from moving from a to c) arise. Also, typically a given
player will be a member of several coalitions, each of which has the ability
to move. How does a player decide which coalition to “join?” Typically, a
coalition will be able to move to several different outcomes. Which out-
come will the coalition actually move to? These are related questions; in
this game, the mechanisms by which players form a coalition and collec-
tively decide which outcome to move to are not specified in any detail.
However, the advantages of leaving out details such as these are those
characteristic of cooperative approaches: relative simplicity and possibly
wider applicability than a particular detailed (and thus perhaps necessarily
arbitrary) specification. These issues will be further considered in the
conclusion.

MORE DEFINITIONS

If a<; b for all ie S, we write a <4 b. We say that a is directly dominated
by b, or a<b, if there exists an S such that a—3b and a<3b. The
logic behind the core is that if a<b, then a cannot be stable because
the coalition S is capable of moving to 4 and all of its members prefer
bto a

Indirect dominance (Harsanyi’'s [21] “indirect dominance™ relation is
slightly different, but he introduces the one here (p. 1494) without giving it
an explicit name) captures the idea that coalitions can anticipate other
coalitions’ actions.

DEerINITION. We say a is indirectly dominated by b, or a < b, if there
exist ag, @,, a,, ..., a,, (Where ap,=a and a,,=5) and S,, S, S5, s Spi_1
such that @, -5 a,,, and a,<g b for i=0,1,2,..,m—1.
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For example, say every member of coalition S, prefers a, to q,
(ag<s, az) but S, cannot move from a, to a, (ay 45, @,). According to the
logic of the core, S, is stuck at a,. However, say S, can move from g, to
an outcome a, (a,—s,a,) and another coalition §, can move from a, to
a; (a; = a;), and all members of S, prefer a, over a, {a, <g, a,). Then
coalition S, might move from a, to a,, anticipating that S, would then
move to a,. So even though a, might not be directly dominated by a,, it
is indirectly dominated by a,, and hence a,, which might even be in the
core, need not be stable.

Note that if a< b, then a <b. The indirect dominance relation <€ can
also be defined by a consistency criterion: if relations are thought of as sub-
sets of Z x Z, it is the smallest (with respect to set inclusion) relation which
contains < and satisfies the property (¢ —»sb and b<c and a< ¢)=
a<c. Note that < is not the transitive closure of <, that is, the smallest
transitive relation which contains < (see Kalai er al. [23], Kalai and
Schmeidler [247], Sen [47, p. 56], and Suzumura [48]).

One could object that just because a <5, it does not follow that the
coalitions S, Sy, ..., S,,_, will actually move from a to b: each coalition
wants to reach &, but would not coalition S, for example, worry that the
coalitions §,, S5,, ..., S,,_; might move toward some other outcome ¢?
Also, would the coalitions move to b if b itself is not stable? We interpret
indirect dominance this way: if a <b and & is presumed stable, then it is
possible, not certain, that the coalitions Sy, S;, S5, .., S,,_; Will move from
ato b.

To check if an outcome a is stable, consider a deviation by coalition S
to d. There might be further deviations which end up at e, where d<e.
There might not be any further deviations, in which case the ending out-
come e =d. In either case the ending outcome e should itself be stable. If
some member of coalition S does not prefer e to the original outcome a,
then the deviation is deterred. An outcome is stable if every deviation is
deterred. Since whether an outcome is stable depends on whether other
outcomes are stable, the set of stable outcomes should satisfy a consistency
conditon.

DEFINITION. A set Y« Z is consistent if ac Y if and only if Vd, S such
that a »¢d, Jec Y, where d=e or d<e, such that ¢ Xe.

Again, the intention here is to define a weak concept, one which
eliminates with confidence. A deviation is deterred as long as there is some
stable ending outcome which might be reached which the deviating coali-
tion does not prefer. If Y is consistent and a € Y, the interpretation is not
that a will be stable but that it is possible for a to be stable. If an outcome
b is not contained in any consistent Y, the interpretation is that b cannot
possibly be stable: there is no consistent story in which b is stable.
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Although there can be many consistent sets, there uniquely exists a
“largest” consistent set, that is, a consistent set which contains all others.
Thus, if an outcome is not in the largest consistent set, it cannot possibly
be stable. The largest consistent set is the set of all outcomes which can
possibly be stable.

PropoSITION 1. Say I'=(N, Z, {<},ens {2 s}scn seg) Then there
uniquely exists a Y such that Y is consistent and (Y’ consistent = Y' < Y).
The set Y is called the largest consistent set of I', written LCS(I').

Proof. (see Tarski [49]). Define a function f: 2% — 2% where f(X)=
{aeZ:V¥d, S such that a—gd, Jec X, where d=¢ or d<e, such that
a¥gse}. A set Yis consistent if and only if Y is a fixed point of f; that is,
Y = f(Y). Note that f is isotonic; that is, X = Y= f(X) < f(Y).

Let 2={X<2Z: f(X)> X}, which is nonempty since f(2f)> . Let
Y=Uy> X Since f is isotonic, f(¥Y)> f(X) for all XeZ, and hence
J(oUyes f(X)2UysX=Y. So f(Y)>Y Since f is isotonic,
SUAY))> f(Y). Hence f(Y)e 2, and thus f(Y)<= Y. So f(Y)=7Y; that is, ¥
is consistent. To show that it contains all other consistent sets, let
f(YY=Y.Then f(Y')o Y and hence Y'c Y. |

This proof is very similar to that of Roth [42,44]: characterize the
solution concept as a fixed point of an isotonic function and use Tarski’s
argument to show that a fixed point exists.

NONEMPTINESS

Strictly speaking, existence and nonemptiness are different. For example,
the core always exists, even though it can be the empty set. The von
Neumann—-Morgenstern solution sometimes does not exist: sometimes no
set, including the empty set, satisfies the definition. Although the largest
consistent set always uniquely exists, it can be empty, as in the following
game: Z={1,2,3,..}, N={1}, i-»,i+1, and i<, if i< Here it
makes sense that no outcome is stable, since Player 1 would always want
to move to the next outcome.

When Z is finite or countably infinite, a sufficient condition for non-
emptiness is that there are no anomalies of this sort; that is, there do not
exist infinite <-chains: there is no ay, a,, a3, ... such that i<j=-a,<a,.
This condition also gives us the “external stability” property: for any out-
come a, either a is in the largest consistent set or there is a stable b in the
largest consistent set such that a < &. Starting from any initial status quo,
the largest consistent set makes a prediction about which stable outcomes
might be reached.
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PROPOSITION 2. Say I'=(N, Z, {<;}icn> {2 s}scn snp) where Z is
[inite or countably infinite. Say that there are no infinite <-chains; that is,
there is no a,, a,, as, ... such that i< j=>a,<a;. Then the largest consistent
set LCS(I') is nonempty and has the external stability property:
Vae Z\LCS(I'), 3be LCS(I') such that a < b.

Proof. Say X < Z is nonempty and define a relation <1, on Z:
a<ayb if (beX=a<b)and ((ceX and b<c)=>a<c).

Note that if W > X, then a <, b= a <1, b. Show that <, is transitive: say
a <1, b and b <1, c. First, say ce X and show a<c¢. Since ce X and b <, ¢,
b <c. Since ce X and b <¢, from a <1, b we know a <c¢. Second, say de X
and ¢ <d and show a<d. Since b<ayc, b<d. Since b<d and a<a, b,
a<kd

Given a nonempty X < Z and relation <, let M(X,<)={aeX:dbe X
such that a<ab}. Show that for all aeX, either ae M(X, <) or
Jbe M(X, <1y) such that a<1, b (hence M(X,<y) is nonempty). Say
ae X\M(X, <ay). Then 3a,e X such that a <1, a,. If a, e M(X, <), we are
done. If not, then Ja, e X such that a, <, a,, and since <1, is transitive,
a<aya, If a,e M(X, <), we are done. Continuing in this manner, the
only case we must check is if 3a,, a,, ... € X such that a, <, a, <1y ---. But
then since <1, is transitive, i < j=a, <1y a;,= a, < a;, a contradiction.

Assume now that Z is finite. If we define a function m: 2% — 2%, where
m(X)= M(X, <1y), then let Z,=m(Z), Z,=m(m(Z)), and in general let
Z,=m'(Z), where Z,=2Z. So we have a nested sequence Z,>Z,>
Z,> ---. Since Z is finite, 3j such that Z,=2; ,. Let V'=2;, and so
V=MV, <,). Since Z, nonempty => Z,,, nonempty, we know Z, is
nonempty for all i, and hence V is nonempty.

Show by induction that for all i, if ae Z\Z,, ,, then 3be Z,,, such that
a <z b. This is true when i =0 since Z, = M(Z, < ;). Assume it is true for
i and show it is true for i+ 1. Say ae Z\Z,,,. If ae Z, \Z,,,, we are
done since Z,, ,=M(Z, ,, <z, ) If aeZ\Z,, ,, by the induction
assumption, 3beZ,,, such that a<iz b. Since Z,52Z,,,, a<a, b If
beZ,,, wearedone;ifbeZ, \\Z,, ,,IceZ,;, ,such that b<i,  c, and
since <1, , is transitive, a <1  c.

So if ae Z\V, then 3b e V such that a <, b, and hence a < b. Therefore V
has the external stability property. Show also that V< M(Z, <,). Say ae V
and a¢ M(Z, <,); that is, 3b € Z such that a <1, b. If b e V, this contradicts
aeV=M(V,<,) If be Z\V, we know from above that 3ce V such that
b <, ¢, and hence g <a, c, which also contradicts ae V=MV, <a,).

Now show f(V) > V, where fis defined in the proof of Proposition 1. Say
aeV and a¢ f(V). Then 3d, S, where a — ;d, such that Vee V such that
d=e or d<e, a<ge. But then de V=>a<d and Vee V such that d<e,
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a <e. Thus a <, d, a contradiction since ae V< M(Z, <1 ,). Since f(V)> V
and V is nonempty, by the proof of Proposition 1 LCS(/") is nonempty; it
contains V and hence has the external stability property.

We sketch the proof when Z is countably infinite. Define a family of sets
(Zoy.maom...} TECUTSiVEly, Where Zo 0.0, = Z, Zns 1., ms,.. = P Zmy my .. )
Zomrtin,. =20 Zimm,..r Zoo,m+1..=(V20Zo,in. ., and so on. It is
easy to see that if [,,/,,/;,.. precedes n, n,, n;, .. in the “backward
lexicographic” ordering, then Z, , , >Z, . .. .

Given that there are no infinite <-chains, we can show that Z, ,, . .
is nonempty for all ny, ny, ny, .. I8 Z, 1 oy 00 #Zn . forallng, ny,
ns, .., then given n,, n,,n;,.. we can uniquely assign an a, ,, , €
Z, miny. Ny 4 1.my,my, .- But then {a, . . }cZis uncountably infinite,
a contradiction. So there exists a nonempty ¥ such that V=MV, <),
and we similarly show that V< M(Z, <1, ) and has external stability. |

This proof is very similar to a construction of Gillies [17], who takes the
direct dominance relation < and defines the “majorization” relation: &
majorizes a if a<b and for all ce Z such that b<c, a<c. Call Z* the
unmajorized elements of Z. Then a new majorization relation can be
defined on Z*: b majorizes a if a<b and for all ce Z* such that b<c,
a<c¢. Call Z** the unmajorized elements of Z*, and similarly generate
Zxxx Zxxx*x  each of which can be shown to contain all von Neumann—
Morgenstern solutions of the original game. Gillies’s goal was to simplify
finding von Neumann-Morgenstern solutions. My proof starts with the
indirect instead of the direct dominance relation and shows that the non-
empty limit of the sequence is contained in the largest consistent set.

When the set of outcomes Z is finite, a simple way to satisfy the no
infinite <€-chains condition is to require that preferences be irreflexive; that
is, no player prefers an outcome to itself.

CoROLLARY. Say I'=(N,Z, {<.}icn> {2 s)scnsea) Where Z s
finite and preferences are irreflexive: Vie N, ae Z, a ¥;a. Then the largest
consistent set LCS(I") is nonempty and has the external stability property.

Proof. Say that there exists an infinite <-chain: a,, a,, a,, ... such that
i< j=>a,;<a;. Since Z is finite, 3i, j such that i< j and @,=a;. Thus ;< a,,
a contradiction since a;< g a; is impossible. ||

How 10 FIND THE LARGEST CONSISTENT SET
WHEN THE SET OF OUTCOMES Is FINITE

Finding the largest consistent set of a game with a finite set of outcomes
is easy. For example, say we have two players and four outcomes: N = {1, 2}
and Z={a, b, c,d}. Say preferences are given by a<,b<,¢<,;d and
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d<; a<,b<,c(when written this way, assume preferences are transitive),
and the effectiveness relations are @ =, b, b, ¢, c >, d, d— 3 q,
and a—( ,;c. We compute the indirect dominance relation iteratively
{(remember < is the smallest relation which contains the direct dominance
relation < and satisfies the property (a—sb and b<c and a<gb)=
a<c) to find that a< b, a<c, b<c, c<kd, d<a, d<b, and d<c exactly
define the indirect dominance relation.

To find the largest consistent set, we employ another iterative procedure.
Take the function f as defined in the proof of Proposition 1-——remember a
set Y is consistent if and only if f(Y)=Y. We know Z > f(Z). Since [ is
isotonic, we can apply it to both sides to get f(Z) > f(f(Z)). We can apply
it to both sides again to get f(f(Z))> f(f(f(Z))), and we have a nested
sequence Z > f(Z)> f{f(Z)) = f(f(f(Z)))> ---. Since Z is finite, f/(Z) =
f/t}(Z) for some j. Thus f/(Z) is consistent, and it is easy to see that it
must be the largest consistent set.

So start with Z={aq, b, ¢, d}. It turns out that f(Z)= {b, c¢}. Note that
if Player 1 moves from a to b, there are only two possibilities (look at the
indirect dominance relation): either no one will move from b or Player 2
will move from b to c¢. Either way, Player 1 is better off, so he will move
from a to b. So a cannot be stable. Also, note that if Player 2 moves from
d to a, there are three possibilities: either no one will move from a, Player 1
will move from a to b and no one will further move, or ¢ will be reached
(either the coalition {1,2} will move from a to ¢ directly or Player 1 will
move from a to b and then Player 2 will move from & to c¢). All of these
cases are better for Player 2 than remaining at 4. So 4 cannot be stable.
The outcome b is (provisionally) stable since Player 2’s deviation to ¢ is
deterred by the further deviation of Player 1 to 4. The outcome c is (provi-
sionally) stable since Player I's deviation to d is deterred by, for example,
Player 2’s further deviation to a.

Now compute f(f(Z))=f({b, c}). It turns out that f({b, c})= {c}.
Since b and ¢ are now the only possible stable outcomes, if Player 2
deviates from b to ¢, the only possibility is that no one will move from c.
Before this deviation was deterred by Player 1’s further deviation to d But
we just showed that d cannot be stable; there will surely be further devia-
tions. The outcome c is still stable: Player 1 would not deviate to d because
d < c; the players will move from d right back to c.

It is easy to check that f({c})= {c}; therefore {c} is the largest con-
sistent set. This process is the spirit behind the largest consistent set: first
throw out outcomes which cannot be stable; given this, throw out out-
comes which cannot be stable; repeat until you cannot throw out any
more. The mechanical nature of this algorithm lends itself to mechanical
computation (the computer program I use is documented in Chwe [13]
and is available from the author).
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A COMPARISON WITH THE STABLE SET

The stable set of von Neumann and Morgenstern [52] is one of the
earliest concepts of game theory (see Lucas [30]). As Harsanyi [21]
argues, however, the stable set as usually defined does not capture the
assumption of fuily farsighted players because of a conceptual flaw: namely,
a further deviation need not deter but can actually encourage a deviation.
The largest consistent set takes this insight into account and improves on
the stable set as it is usually defined. However, the largest consistent set
and the stable set can be interestingly reconciled within the theory of social
situations (Greenberg [19]).

Given Z and a relation <1 defined on Z, we say V is a stable set of
(Z,<) if (1) Aa,beV such that a<b (internal stability); and (2)
Ybe Z\V, dae V such that b<1a (external stability). Equivalently, if we
define the “dominion” of ¥ to be Dom(V)= {aeZ:3be V such that
a<1b}, the set of outcomes dominated by outcomes in ¥, then ¥ is a stable
set of (Z, <1 ) if and only if V' =Z\Dom(V).

von Neumann and Morgenstern argue that stable sets of (Z, <), where
< is the direct dominance relation, are solutions to the game I. Stable
sets do not always exist. Take for example the Condorcet “paradox,” in
which N = {1, 2,3}, Z = {a, b, ¢}, preferences are a <, b <, ¢, c <, a<, b,
b<;c<;a, and effectiveness relations are a—, b, b—, 3¢, and
¢33 a Then a<b, b<c, and ¢ <a, and no stable set exists. The largest
consistent set, however, is {a, b, ¢}.

When stable sets do exist, they can make predictions quite different from
the largest consistent set. For example, let N = {1,2}, Z = {q, b, ¢, d},
a<;b<,c<,d, d<;a<;b<;c, and a— b, by, ¢y 4,
d— . a, and a—, , c (the example we computed in the previous sec-
tion). Then a<b, b <c, c<d, d<a, and a < c. The only stable set is {b, d},
while the largest consistent set is {c}.

In this game, according to the logic of the stable set (von Neumann and
Morgenstern [52, p. 265]), the reason that Player 2 will not deviate from
d to a is that g is “unsound,” being dominated by b, an element of the
stable set. But Player 2 prefers b over d; in fact, she likes it even better than
a. The fact that a is dominated by & does not deter Player 2’s deviation; if
anything, it encourages it.

To make this clearer, consider a game in which N= {1, 2}, Z={a, b, ¢},
a<;¢c<; b, a<,b<,c,and a—;,band b—,,c. Then a<b and b<c,
and the only stable set is {a, c}. Again, the fact that 4 is dominated by ¢
does not deter Player 1I’s deviation from a to b, since Player 1 prefers ¢ over
a. Player 2 would surely move from b to ¢, and hence Player 1 would surely
move from a to &; the only stable outcome should be c. The largest consistent
set is {c}, making this prediction.
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What matters is not whether a deviation is vulnerable to further devia-
tions but to where a deviation will ultimately lead. Not all further devia-
tions will deter the deviation; some might encourage it. Consider a game
exactly like the above, but in which Player 1’s preferences are ¢ <, a<; b
instead. Then a<b and b <c: the domination relation is the same, and
hence the only stable set is again {a, c}. But in this game Player 1 does not
prefer ¢ over a, and hence Player 2’s move from b to ¢ deters Player 1's
move from a to b, making a stable. The largest consistent set is {a, c}. The
dominance relation, and hence the stable set, treats these two games
identically, ignoring relevant information.

The two games are different in that ¢ indirectly dominates a in the first
but not in the second. It turns out that the most immediate way to deal
with farsightedness, by considering stable sets of (Z, <) instead of (Z, <),
is not bad. The logic goes like this: say V is a stable set of (Z, <) and let
ae V. Say there is a deviation a—sd If deV, then a K¢ d, because
otherwise a < d, violating internal stability, and so coalition § is deterred.
So let de Z\V. By external stability, there is an ee V such that d<e. But
since a and e are in ¥V, by internal stability, a € ¢. Hence it must be that
a K s e, and so coalition S is deterred by the further deviations to e. Hence
a is stable.

The reason that this argument works with indirect but not direct
dominance is because if a—»>gd and d <e, then a € e tells us something
about the preferences of coalition S. If a > ¢d and d<e, then a & e does
not tell us anyting. It could be that a e, in which case the deviation is
deterred, or it could be that a + g e and @ < e, in which case the deviation
is encouraged.

So if players are farsighted, stable sets of (Z, <) are good and stable sets
of (Z, <) are not so good. It is easy to show that any stable set of (Z, <)
is contained in the largest consistent set.

PrROPOSITION 3. Say I'=(N, Z, {<;}iens {2 stscnseg) If V is a
stable set of (Z, <), then V< LCS(I').

Proof. Say V is a stable set of (Z, <). By the proof of Proposition 1,
it suffices to show that f(¥)> V. Say ae V and a¢ f(V). Then 3d, S, where
a - ¢d, such that for all ee V' such that d=e or d<e, a<se. So de V=
a<d and Vee V such that d<e, a<e. Say de V. Then a<d, violating
internal stability. So let de Z\V. From external stability, Je € V' such that
d <e. But then a < e, violating inner stability. |

The situation is similar with the core: the largest consistent set has no
relationship with the core of (Z, <), but when it has the external stability
property (as in Proposition 2) it is easy to see that it contains the core of
(Z, <)



310 MICHAEL SUK-YOUNG CHWE

(7.8,9) 5.4.1)
23 m” T
2.3 _ _ N
1.2} 9.7.8) — (3} 3 (45,9 @, 5.0
ud 2 l}/
/11,3} { )\ ‘(
38,9,7 (5,4,0)

Fic. 1. The stable set is arbitrary.

The familiar disadvantages of the stable set of (Z, <) are that it some-
times does not exist, and when it does it need not be unique (but see Asilis
and Kahn [1]). But there are two further disadvantages. First, it is some-
times arbitrary, as in the following three-player game, represented as a
directed graph (Fig. 1).

Here there are seven outcomes, each represented by a utility profile, and
the effectiveness relations are represented by labeled directed arcs. In this
game the indirect and direct dominance relations are equivalent, and the
only stable set is {(8,9,7), (4, 5,9), (4, 5, 0)}. Note that the four rightmost
outcomes, {(4,5,9),(5,4,1),(4,5,0),(54,0)}, form a game in itself in
the following sense: Players 1 and 2 are the only players; once in this set,
Player 3 can do nothing, and Players | and 2 cannot move outside this set.
In this smaller game, both {(5,4,1),(5,4,0)} and {(4, 5,9), (4, 5,0)} are
stable sets, and in fact they are completely symmetric with respect to
Players 1 and 2. But only (4, 5, 9) and (4, 5, 0) are considered stable in the
larger game because of the three leftmost outcomes. Whether an outcome
is stable depends on outcomes which cannot possibly be reached. The
largest consistent set of this game is the set of all outcomes, which is not
much of a prediction but at least does not rule out arbitrarily.

Secondly, the stable set cannot make “obvious” predictions, as in the
following modification of the Condorcet “paradox” (Fig. 2). Here Player 3
will surely move from (0, 0, 0) because she would be better off no matter
what happens. But no stable set of (Z, <), or of (Z, <), exists. The largest
consistent set, however, is {(9, 7, 8), (7,8,9), (8,9, T} }.

In summary, replacing direct dominance with indirect improves the
stable set, but it still has disadvantages when compared to the largest

7.8,9
-«
{2,3}
~
{1,2) (9,7.8) <& (3) — (0,0,0)
{1.3}
-
8.9.7

FiG. 2. The stable set cannot make an “obvious” prediction.
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consistent set. The main disadvantage of the largest consistent set seems to
be its lack of internal stability, as in the Condorcet “paradox.” But there
are two ways to respond this criticism.

First, the largest consistent set, like rationalizability, does not try to say
what will happen but what can possibly happen. Saying that all three out-
comes of the Condorcet “paradox”™ are stable might be self-contradictory,
but saying that all three outcomes are possibly stable is not. In the example
above, we cannot say that a given outcome in {(9, 7, 8), (7, 8,9),(8,9,7)}
is stable, but at least we can say that (0, 0, 0) cannot possibly be stable.

Second, some games have so much domination (direct or indirect) that
almost no nontrivial solution concept can satisfy internal stability. For
example, if an odd number of voters choose by majority rule over a finite
set of alternatives and each voter has complete strong preferences (dis-
cussed in a following section), then in any pair of outcomes one outcome
dominates the other. If one outcome exists which dominates all other out-
comes (a “Condorcet winner”) then a stable set exists. Otherwise, no stable
set exists because no set of two or more outcomes can possibly satisfy inter-
nal stability. Here internal stability works against not just the largest con-
sistent set, but against any solution concept which does not always yield
singletons or the empty set.

For the sake of comparison 1 have emphasized the differences between
the largest consistent set and the stable set. With the theory of social situa-
tions (Greenberg [19]), however, they can be brought together. Here I
deploy the theory not in its full generality, but just enough for the purpose
of demonstration.

So let each ae Z be a position. Each position a has associated outcomes
X(a)={a}u {beZ:a<b}; that is, from the position a the final outcome
will either be 4 itself or an outcome b which indirectly dominates 4. The set
X(a) denotes which outcomes are feasible from the position a. Say that
a(a) = X(a) is the set of outcomes which might actually “happen.” Both X
and ¢ can be considered correspondences from Z to Z; we call ¢ a standard
of behavior.

Not all standards of behavior are sensible: a standard of behavior should
satisfy some notion of consistency. To define what we mean by this, let the
conservative dominion of a, CDom(¢s), be a correspondence from Z to Z
defined by CDom(os)(a)= {be X(a): 3S,d such that b—sd, o(d)+ &,
and b<geVeeco(d)}. The idea here is as follows: given a standard of
behavior ¢, we can conclude that some of the outcomes in X(a) will not
happen. Take an outcome b€ X(a) and say there exists some coalition S
which can deviate to a position d. From this position d, according to the
standard of behavior, o(d) is the set of outcomes which might happen. If
the coalition § prefers every outcome in a(d) to b (note that o(d)# &
prevents this from being satisfied trivially), then the coalition, even acting
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conservatively, would deviate to position d. So the outcome be X(a)
cannot happen.

We say that o is a conservative stable standard of behavior, or CSSB, if
o = X\CDom(g); that is, o(a) = X(a)\CDom(¢g)(a) for all ae Z. In other
words, for every position a, outcomes outside (@) are ruled out by o, and
no outcome in a(a) is ruled out by o. The spirit of the stable set is here
apparent: the only difference is that instead of a coalition deviating from an
outcome to another outcome, a coalition deviates from an outcome to a
position, from which several outcomes might occur. Coalitions are assumed
to deviate conservatively, only if all possible outcomes make them better
off. The connecting result (I am indebted to Joseph Greenberg and
Benyamin Shitovitz for this) is as follows.

PROPOSITION 4. Say I'=(N, Z, {<,}icn> {2 s}scn sez)

(a) If o is a CSSB, then Y < Z such that a(a)=X(a)nY for all
ae Z. This Y is consistent.

(b) If the condition of Proposition2 holds, then the standard of
behavior o defined by o(a)= X(a)nLCS(I') is a CSSB.

Proof. Straightforward; details can be obtained from the author. Note
that in (b), the external stability property of LCS(f") guarantees that
olay£~ T VaeZ. |

Result (a) says that if ¢ is a CSSB, then there is a consistent Y which
makes exactly the same predictions: from a position a€ Y, the outcome a
might happen (aea(a)); from a position ae Z\Y, the set of outcomes
which might happen are those outcomes in Y which indirectly dominate a
(o(a)={beZ:a<b}n Y). Result (b) says that the largest consistent set
thought of as a standard of behavior is actually a CSSB.

This connection shows not only how the largest consistent set and stable
set are similar but also exactly how they differ. If instead we let X(a)= {a}
for all ae Z, then a CSSB of this simpler setup corresponds exactly to a
stable set of (Z, <); that is, if V is a stable set of (Z, <), then
o(a)={a} nVis a CSSB, and if ¢ is a CSSB, then there exists a stable set
V such that o(a)= {a} n V for all ae Z. The difference between the largest
consistent set and the stable set as originally defined by von Neumann and
Morgenstern is how X(a) is defined. For the largest consistent set, an out-
come is not just an outcome but a position from which a set of outcomes
might occur.
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STRATEGIC FORM GAMES

Say we have a strategic form game with a finite, nonempty set of players
N, each individual ie N having a finite, nonempty, strategy set C; and
utility function u;: C - R, where C= x,_y C;, the set of strategy profiles
(given Sc N, let Cs= x,.4C;, and given ce Cand Sc N, let cg=(¢;)ics)-
There are at least four ways to apply the largest consistent set to this
strategic form game.

First, the largest consistent set can predict which of several pure strategy
Nash equilibria will be played if there is unlimited public preplay com-
munication. Let Z be the set of pure strategy Nash equilibria, let a<; b if
u(a)<u;(b), and let a—sb if a, ¢=b, ¢ For example, consider the
following four-person game (Table II). There are three pure strategy Nash
equilibria: (1a, 24, 3a, 4a), (1a, 2a, 3b, 4b), and (15, 2b, 3a, 4a). There is no
strong Nash equilibrium. But if we let Z = {(1a, 2a, 3a, 4a), (1a, 2a, 3b, 4b),
(1b, 2b, 3a, 4a)} and define <; and — g as above, then the largest consistent
set is {(14, 2b, 3a, 4a)}. So the unique prediction is that if the players can
freely, but publicly, communicate before playing the game, then they will
play (14, 24, 3a, 4a).

This is perhaps the most natural application of the largest consistent set
to strategic form games. Since individuals must play simultaneously and
cannot commit themselves, the outcome of the game is presumably a Nash
equilibrium. Which Nash equilibrium they will actually play is a matter of
coalitional bargaining. In the example, Players 1 and 2 might propose to
play (la, 2a, 3a, 4a). But then Players 3 and 4 might propose to play
(1la, 2a, 3b, 4b), and so forth. Since communication is public, any coalition
can “further respond” and preplay negotiations do not exogenously end. If
players are assumed to be farsighted, however, the largest consistent set can
make a prediction.

The second application is to Greenberg’s [19, p. 98] “individual con-
tingent threats situation,” in which the strategic form game is not “played”

TABLE II
Of the Three Nash Equilibria, the L.CS Selects One

2a 2b 2a 2k
la 3,31,1 0,0,0,0 la 0,0,0,0 0,0,0,0 4a
15 0,0,0,0 2,2,3,3 16 0,0,0,0 0,0,0,0

2a 26 2a 2b
la 0,0,0,0 0,0,0,0 fa 1,1,2,2 1,0,1, 1 4
15 0,0,0,0 0,0,0,0 15 0,1,1,1 0,0,0,0

3a 3b
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in the sense of simultaneous moves. Rather, each individual, facing a
proposed strategy profile c € C, can declare: “If all you other players stick
to playing c ., { will play d;e C, instead of ¢,” Each player can make
such contingent threats, and realizes that other players can make con-
tingent threats in turn. Players can revise their threats; no one is committed
to anything.

So let Z=C, let a<;b if u,(a)<u;(b), and let a >¢b if S={i} and
Ay iy =by. (- Greenberg’s solution is the stable sets of (Z, <), where
< is the direct dominance relation. Stable sets of (Z, <) always exist if
there are one or two players (Greenberg [19, p. 100]) but not if there are
three or more, as shown in the following game (Table III, adapted from
Greenberg [19, p. 101]). Here seven outcomes dominate each other in a
cycle. The other five outcomes do not dominate anything and each are
dominated by one or more of these seven. Since seven is an odd number,
no stable set exists. However, the largest consistent set is {(la, 2b, 3b)},
making a unique prediction.

The largest consistent set in the individual contingent threats situation
contains the strict Nash equilibria. A strategy profile ce C is a strict Nash
equilibrium if for all ieN, and for all die C\{c;}, uilcy,cpy)>
u;(d;, ¢y (i) A strategy profile is a strict Nash equilibrium if each player
is playing his unique best response, given the other players’ strategies
(Harsanyi [20] uses the word “strong” instead of “strict™).

PropPoSITION 5. Say (N, (C))icn, (4:):cn) is a strategic form game in
which N is finite and nonempty and the strategy sets C,; are finite and non-
empty. Let I'= (N, Z, {<;}ien> {—s}sen. sxg) be a game corrsponding to
the individual contingent threats situation, where Z= x,.nC;, a</b if
ui(a)<u;(b), and a—~sbif S={i} and ay,,y=by (- If ¢ is a strict (pure
strategy) Nash equilibrium of the strategic form game, then ce LCS(I").

Proof. Say c is a strict (pure strategy) Nash equilibrium. By the proof
of Proposition 1, it suffices to show that f({c})> {c}. Say c >5d If d=c,
then ¢ K s c. If d # ¢, by the definition of I', we know that S= {i} for some
i and that ¢y, =dy ;> and hence d—; c. Since c is a strict Nash
equilibrium, u;(c) > u;(d) and hence d<;c. Hence d<c and ¢ €;c. |}

TABLE 111
No Stable Set Exists but the LCS Predicts a Unique Qutcome

2a 2b 2a 2b
la 1,1,4 0,0,0 la 0,7,1 6,6,5
15 2,2,6 3,37 1 0,00 0,0,0
1c 0,0,0 4,42 le 0,0,0 553
3a 3b
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TABLE 1V
Strict, Not All, Nash Equilibria Are Contained in the LCS

2a 2b
la 1,1 0,0
16 11 2,2

For example, in the following game (Table 1V), the largest consistent set
is {(1b, 2b)}. Here (1a, 2a), a Nash equilibrium but not a strict Nash equi-
librium, is not stable because the deviation to (14, 2a) cannot be deterred.

The third application is to coalitional analysis of the strategic form
game. The traditional solution concepts are strong Nash equilibrium and
the alpha-core and beta-core (Aumann [3, 4, 5], Aumann and Peleg [7];
see also Laffond and Moulin [26], Li (28], and Ray and Vohra [39]). To
apply the largest consistent set we can use Greenberg’s [ 19, p. 102] “coali-
tional contingent threats situation™: not only each individual but each
coalition S can declare: “If all you other players stick to playing c ., We
will play dse C instead of ¢5.” Solet Z=C, let a<; b if u,(a) < u,;(b), and
let a—>sbif ay =5y . The set of strong Nash equilibria is the core of
(Z, <), and Greenberg’s solution is the stable sets of (Z, <) (Chakravorti
and Kahn [12] also define an appropriate dominance relation and use a
stable set approach).

The largest consistent set in the coalitional contingent threats situation
contains the “strict” strong Nash equilibria. Here “strict” strong Nash equi-
librium is defined similarly to strict Nash equilibrium: a strategy profile
ceC is a strict strong Nash equilibrium if for all Sc N, and for all
dse Cs\{cs}, there exists je S such that u;(c) > u,(ds, ¢, ). Strong Nash
equilibrium can be defined similarly by changing > to >; hence all strict
strong Nash equilibria are strong Nash equilibria. Also, it is easy to see
that just as all strong Nash equilibria are Nash equilibria, all strict strong
Nash equilibria are strict Nash equilibria.

PROPOSITION 6. Say (N, (C));en, (,)icn) is a strategic form game in
which N is finite and nonempty and the strategy sets C, are finite and non-
empty. Let I'= (N, Z, {<,}icn> {2 s}scn szg) be a game corresponding
to the coalitional contingent threats situation, where Z= %, . yC;, a<;b if
ua) <u;b), and a —>5b if ayg=by If ¢ is a strict strong Nash
equilibrium of the strategic form game, then ¢ e LCS(I).

Proof. Say c is a strict strong Nash equilibrium. Show by induction
that for all d# ¢, d <c. First, show that for all de (CA\{c;}) x {cy, ()}, we
have d <c. Since ¢ is a strict strong Nash equilibrium, u,(¢)> u,(d), and
hence d<;c. Since d—;c, we have d<c Next, assume that for all
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TABLE V
The LCS and Strong Nash Equilibrium Differ

2a 26 2a 2b

55,
15 0,0,

de x,cs(C\{c;})x {¢y.s}> Where [S| =k and k> 1, we have d <c. Show
that for all de x,.s(C\{c;})x {cy s}, where [S|=k+1, we have d<c.
Let d=(ds, ¢y 5), where dge x ;. 5(C\{c;}) and |S| =k + 1. Since ¢ is a
strict strong Nash equilibrium, there exists some j € S such that u;(c) > u;(d),
and so d<;c. Also, if we let @' = (dg.,;;, ¢;, cpvs) ={(ds ()5 Cusin) WE
have d—;; d’. But dg. (1€ X, 5 ,(CA{c;}) and [S\{/j}| =k since jeS.
Hence, by assumption d’ <c. Since d<;c, d—;, d’, and d' <, we know
d < ¢ by the definition of <.

To show that ¢e LCS(I"), by the proof of Proposition 1 it suffices to
show that f({c})> {¢}. Say c > sd If d=¢, then ¢ K¢ If d5 ¢, we know
that d € ¢ (from the above) and ¢ K5c. §

To see why only “strict” strong Nash equilibria are necessarily contained
in the largest consistent set, consider the following game (Table V). The
only strong Nash equilibrium is (14, 24, 3a) but the largest consistent set is
{(1a, 24, 3b)}. From (la, 2a, 3a), Players 1 and 2 will move to (15, 2b, 3a)
anticipating the move by all three players to (1q, 2a, 36).

However, “generically” the largest consistent set contains the strong
Nash equilibria. It also makes a prediction when no strong Nash equilibria
exist, as in the following game (Table VI). Here there is no strong Nash
equilibrium, and there is no stable set of (Z, <) or of (Z, <). However, the
largest consistent set is {(1a, 24, 3a), (1a, 2b, 3b), (15, 2b, 3a)}.

Finally, outcomes in the largest consistent set can be Pareto dominated
by other outcomes in the largest consistent set (Table VII). In this game
the largest consistent set is {(1a, 2a), (16, 2b), (18, 2¢), (1c, 2b), (1¢, 2¢)},
even though (15, 2b) Pareto dominates (1a, 2a).

In the fourth application, it is assumed that coalitions are concerned
with the further deviations not of all coalitions but only of coalitions

TABLE VI
No Strong Nash Equilibria Exist

2a 25 2a 2b
la 1,2,3 0,0,0 la 4,04 3, 1,2
16 0,4, 4 2,31 15 0,00 4,4,0

3a 3b
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TABLE VII
An Outcome in the LCS Is Pareto Dominated by Another Outcome in the LCS

2a 2b 2c
1a 2,4 0,0 0,0
1b 0,0 3,5 1,7
e 0,0 7,1 53

]

composed of a subset of its members, “subcoalitions.” Chakravorti and
Kahn [127 call this the “nestedness” assumption: the coalition {1, 2,3}
anticipates the further deviations of, say, {1,2} (who must in turn
anticipate the further deviations of {1} and {2}), but does not anticipate
the further deviations of {4,5} or {1,4} (see also Maschler [31] and
Thomson [50]). On this assumption Bernheim et al. [9] recursively define
“coalition-proof Nash equilibrium.” The idea is that a coalition’s deviation
can be invalidated by a subcoalitions valid further deviation; a further
deviation is valid if there are no valid further deviations by “subsubcoali-
tions,” and so forth, recursing all the way down to one-player coalitions,
whose deviations are always valid.

For example, in the following game (Table VIII), (15, 25, 3b) is the only
coalition-proof Nash equilibrium. The deviation by {1, 2} to (1¢, 2¢, 38) is
invalidated by the further deviation of {1} to (1a, 2c, 3b). But here is the
familiar problem: Players | and 2 are encouraged, not deterred, by this
further deviation.

The largest consistent set is designed to apply to situations in which
deviations are public and hence any coalition, not just subcoalitions, can
further deviate. For the sake of comparison, however, we can adapt it to
the nestedness assumption by letting Z=Cx(2¥\{}) and defining
(a, R)=<,; (b, T) if u'(a)<u'(b) and (a, R)—>5(b,T) if R>S=T and
ay s=by.s- Greenberg [18] shows that a stable set V of (Z, <) exists
uniquely, and a is a coalition-proof Nash equilibrium if and only if
(a, N)€e ¥V (see also Kahn and Mookherjee [22]).

With this adaptation, we can compute the largest consistent set in this
example. It turns out that (la, 24, 3a) is the only outcome such that (-, N)

TABLE VIII
The LCS and Coalition-Proof Nash Equilibrium Differ

2a 26 2¢ 2a 25 2c
ta L, 11 0,0,0 0,0,0 la 0,50 0,0,0 44,0
15 0,0,0 0,0,0 0,0,0 15 0,0,0 2,22 0,00
le 0,0,0 0,0,0 0,0,0 1c 0,00 0,0,0 3,30
3a 3b

642/63/2-13
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is in the largest consistent set. Player 3 will not move with the other players
to (14, 2b, 3b) because of the further deviations which will end up at
(1a, 2¢, 3b).

To summarize, the largest consistent set usefully applies to strategic form
games in a variety of ways, and can provide interesting predictions, even
under the nestedness assumption, for which it was not designed.

CoALITIONAL FORM GAMES

Most previous work on farsightedness has been on coalitional form
games. It is in this context, however, that the largest consistent set is least
satisfactory: proving nonemptiness is difficult and all but simple examples
are hard to compute. Nevertheless, we can make some comparisons.

A (transferable utility) coalitional form game is defined by a charac-
teristic function v: 2V\ { &} — R, which for each coalition S gives the total
amount of utility v(S) they can distribute among themselves without the
help of players outside of S (we normalize v(N)=1 and v({i})=0 for all
0. fwelet Z={aeR" 37 ,a,=1 and ¢,20Vi} be the set of imputa-
tions, and let a —»5 & if 3, ¢ b, <v(S), then we can apply the largest
consistent set (nontransferable utility games can be adapted similarly).

In three-person games, the direct and indirect dominance relations are
equivalent (see Harsanyi [21] and Weber [55], who define indirect
dominance slightly differently). Hence all von Neumann-Morgenstern solu-
tions (stable sets of (Z, <)) are stable sets of (Z, <), and since stable sets
of (Z, <) are contained in the largest consistent set, the largest consistent
set contains all von Neumann—Morgenstern solutions. Since von Neumann-—
Morgenstern solutions exist for all three-person games, the largest consistent
set is nonempty for all three-person games.

For example, if N={1,2,3} and o({1,2})=0v({1,3})=0({2,3})=1
{the “divide the dollar by majority” game), the largest consistent set is the
whole set Z. If v({1,2})=1/5, v({1,3})=13/5, and v({2, 3})=3/5, then the
largest consistent set is the shaded region in Fig. 3.

Of all the solution concepts dealing with farsightedness, the various
bargaining sets (Aumann and Maschler [6], Maschler [32]) have been
most developed (see also Asscher [2], Billera [10], and Dutta ez al. [15]).
They are quite different in spirit: a counterobjection need not actually deter
an objection (see Wilson [56, p.260]). A counterobjection is understood
not as a deterrent but more like a “counteroffer.”

In Vickrey’s [51] self-policing pattern, only deviations outside the
pattern, “heresies,” and not all deviations, are considered. For a heresy to
be deterred, it must be “suicidal™: in all possible further deviations, some
member of the deviating coalition must be made worse off, as opposed to
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(1,0,0)

ay+a3=3/5

ay +ay= 3/5

ai+ary= 1/5

©,1,0) ©,0,1)
FiG. 3. The LCS in a three-person coalitional form game.

there being some further deviation which does not make some member of
the deviating coalition better off.

In Roth’s [42, 43, 44] “subsolution,” outcomes can rule out each other;
in contrast, the external stability property tells us that all outcomes not in
the largest consistent set are indirectly dominated by outcomes in the set.
A generalization of the von Neumann—Morgenstern solution, it is subject
to the same criticisms: since it is defined using the direct dominance
relation, it does not take into account relevant information.

Finally, Harsanyi [21] and Weber [54] (see also Perry and Reny [38])
explicitly model the intuitive basis for the largest consistent set, an exten-
sive form bargaining game. In Harsanyi’s bargaining game, there is in addi-
tion to the regular players a “chairman” who decides at each stage which
coalition can make a counterproposal to the current proposal, and who
wants to make the bargaining process last as long as possible. In Weber’s
bargaining game, a particular coalition is “given the floor” by some
perhaps probabilistic rule. To keep coalitions from making suggestions
indefinitely, the game either has an exogenously detemined maximum length
or an exogenous probability of ending at any given stage.

These models are similar in spirit to the largest consistent set, but differ
in how they treat the problems of what happens if coalitions object
indefinitely and which coalition of several gets to further respond. In the
largest consistent set, there is no need for either an exogenous stopping of
the game or a no-agreement payoff. As long as the largest consistent set is
nonempty, this problem is endogenized. In the largest consistent set,
players think that any coalition capable of responding might be the one
that responds, and make either a very optimistic (when deciding to move)
or conservative (when deciding not to) choice, instead of an expected value
calculation (see also Klingaman [25]). The largest consistent set might be
considered a compromise, keeping the spirit of subgame perfect equilibrium
without the complexity of an explicit extensive form bargaining game.
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MajoriTy RULE VOTING

Which alternative a group of people will choose by majority rule was
perhaps the first question of coalitional stability. The Condorcet “paradox”
ranks, along with the Prisoners’ Dilemma, as one of the archetypes of
modern social theory, believed important enough by Riker [407] to rule out
certain theories of democracy. Perhaps it is not a paradox of voting but a
paradox in assuming only myopic rationality.

In the simplest environment, the set of alternatives (outcomes) is finite and
nonempty and there are an odd number of voters (players), each with complete,
transitive, and asymmetric strong preferences. At least three solution concepts
are always nonempty: the top cycle (Ward [ 53], Miller [34]), the uncovered
set (Miller [35], McKelvey [33]), and the stability set (Rubinstein [45],
Le Breton and Salles [27]; see also Li [29]). To compare the largest con-
sistent set with these three, let @ — ¢ b for all a and & if S is a majority.

Here we write a< b if a< b for some majority S (it is easy to see that
<,<, and < are equivalent, and, because there are an odd number of
players, complete and asymmetric). The top cycle is a nonempty P= Z
such that (a) for all be P and for all ae Z\P, a<b, and (b) there is no
nonempty proper subset of P which satisfies (a). The top cycle is the
smallest subset such that every outcome inside beats every outcome outside.

Say b covers a if b#a and for all ce Z such that ¢ <a, c<b. In other
words, b covers a if everything beaten by a is also beaten by b. The
uncovered set is {ae Z: there is no b€ Z which covers a}.

The idea behind the stability set is that even if S is a majority and
a<g b, Player i€ S might not vote for b over a if there is a possibility that
another majority would then implement an outcome ¢ which is worse for
i than a. So the members of S would vote for b over a only if a << b; that
is, a<s b and there does not exist ie S and c€ Z such that b<c and ¢ <; a
(note that c itself need not be stable; players are not fully farsighted). The
stability set is {ae Z: there is no b€ Z and majority S such that a < b}.

If a beats all other outcomes by majority, then the three concepts
and the largest consistent set all agree in predicting {a}. The general
relationships between them are as follows (Fig. 4).

PrROPOSITION 7. Let I'=(N, Z, {<,}icn> {2 s}scn seg) where Z is
finite, |N| is finite and odd, preferences <, are complete, transitive, and
asymmetric, and a — ¢ b if and only if |§| > |N|/2. Then

(a) LCS(I') < stability set;

(b) uncovered set c stability set,
(c) wuncovered set < top cycle.

(d) LCS(I') nuncovered set # (5.
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Proof. (a) Say aeLCS(I') and a<<g b, where S is a majority. Then
a<sb. Then 3ce LCS(I") such that &< ¢ and @ K5 ¢. Since preferences are
complete and symmetric, 3i e S such that ¢ <; a. Since b < ¢, there is some
majority T such that b<,¢. So Jie S and ¢ such that b<c and ¢<;a, a
contradiction of a << ¢ b.

(b) Say a is uncovered. Miller [35, p. 73] shows that for all b #a,
either b < a or 3c such that b<c<a. Now say a<<¢b. Then a<gb and
hence it cannot be that b<a. So 3¢ such that b<c<,a, where T is a
majority. Since S and T are majorities, they intersect and hence Jie S such
that ¢ <; a. Since b < ¢, we have a contradiction of a << b.

(c) Proved in Miller [35].

(d) Ttis easy to show that b covers a if and only if a < b, where <1,
is defined in the proof of Proposition 2. We defined V to be the limit of
ZynZ>Z,> .-, where Zy=Z and Z,,,={aeZ,:be Z, such that
a<iz b}, and showed that V is nonempty and V< LCS(I"). Since the
uncovered set is {ae Z: Ab e Z such that a <, b}, the uncovered set is simply
Z,. Since Vis nonempty and V= Z, and V < LCS(I"), LCS(I") n uncovered
set# 5. |

The two competitors in terms of specificity of prediction are the largest
consistent set and the uncovered set. However, the uncovered set can be
too “small.” Say |N|=3 and Z={(1,3,4),(3,4,1),(4,1,3),(2,2,2)}, in
which each outcome is represented by a utility vector. Then the uncovered
set (and top cycle) is {(1,3,4),(3,4,1),(4, 1, 3)} while the largest con-
sistent set (and stability set) is the entire set Z. Since (2, 2, 2) does not beat
any alternative, it is not in the uncovered set. But, for example, Player 2
might not join with Player 1 in moving to (3,4,1) because of the
possibility that Players | and 3 would then move to (4, 1,3). So the
uncovered set (and even the top cycle, which is larger) might not contain
alternatives which are stable from a farsighted point of view.

But the uncovered set can also be too “large.” Say [(N|=3 and
Z=1{(1,3,4),(4,2,3),(54,1),(2,5,2), (3,1, 5)}. Then the uncovered set
(and stability set) is {(4, 2, 3), (5,4, 1), (2, 5, 2), (3, 1, 5)}, the top cycle is
Z, and the largest consistent set is {(4, 2, 3), (5, 4, 1), (2, 5, 2)}, the smallest

‘. Uncovered set ’

FiG. 4. The LCS, top cycle, uncovered set, and stability set.

Largest
consistent set

All outcomes




322 MICHAEL SUK-YOUNG CHWE

of all. It makes sense that (1,3,4) should be thrown out, since {1,2}
would certainly move to (5, 4, 1) because either (5, 4, 1) would be stable or
{2,3} would from there move to (2, 5,2), which {1,2} also prefers. But
once (1, 3, 4) is thrown out, then {1, 2} would surely move from (3, 1, 5)
to (4, 2, 3), since either (4, 2, 3) would be stable or {1, 2} would from there
move to (5,4, 1), which {1, 2} also prefers. So (3, 1, 5) should be thrown
out too.

In other words, if we accept the logic of the uncovered set, we throw out
(1, 3, 4) since it is covered by (5, 4, 1). But in the “reduced game” in which
Z={(4,2,3),(54,1),(2,52),(3,1,5)}, (3,1,5) is covered by (4,2, 3),
and hence (3, 1, 5) should also be thrown out. A similar criticism applies
to the stability set. Since (1, 3, 4) <<, ,; (5,4, 1), (1, 3,4) is thrown out.
However, the only reason that (3, 1, 5) <<y, ,; (4, 2, 3) is not true is that
(4, 2,3)<(1, 3,4) and hence Player 1 would hesitate. But since (1, 3,4) is
not in the stability set, Player 1 should be able to ignore it. In the reduced
game, (3,1, 5) << 2, (4, 2, 3), which eliminates (3, 1, 5).

As opposed to the uncovered set and the stability set, the largest con-
sistent set has the property that after throwing out the nonstable outcomes,
reapplying it gives the same answer. Compared to the stability set, it shows
how assuming full farsightedness can tighten the prediction.

CONCLUDING REMARKS

Earlier I discussed how many details are left out of our definition of a
game, thus blurring important issues. Here I illustrate some of these issues
with examples.

Say N={1}, Z={a,b,c}, a— ;b and a— ¢, and a<, b<, c. The
largest consistent set is {b,c}. Since a<b and a<c, starting from the
status quo of g, the prediction is that Player 1 will either move to b or to
¢. But Player 1 will surely move to ¢ since he prefers it to b. This example
illustrates how the largest consistent set does not incorporate any idea of
“best response”: coalitions will move to any, not just the best, of the
outcomes which are better than the status quo.

Say N={1,2}, Z={a,b,c}, a- b and a—,, ¢, and c<,a<, b
and a <, b <, c. The largest consistent set is {b, ¢}. Since a < b and a<c,
starting from the status quo of g, the prediction is that either the coalition
of both players will move to & or Player 2 will move to ¢. But surely
Player 2 will not join with Player 1 and move to b, since he could do better
all by himself by moving to c. It seems that subcoalitions should be able
to veto coalitional moves. Also, for example, if a > 5 b and a — ; ¢, perhaps
the members of S~ T should be abie to decide which move might be made.
The largest consistent set does not say anything about these issues.
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Say N={1,2},Z={a,b,c},a—banda— ;5 ¢, and a<, b <, c and
a<,b<,c The largest consistent set is {b,c}. Since a<b and a<c,
starting from the status quo of a4, the prediction is that either Player 1 will
move to b or Player 2 will move to ¢. But since both players like ¢ best,
Player 1 would not move to b but would “wait” and let Player 2 move to c.
This example shows that in the largest consistent set, a coalition believes that
if it does not move, no other coalition will. This is clearly not consistent. A
coalition is farsighted enough to consider what further moves other coalitions
will make once it moves, but does not consider what other coalitions will do
if it does not move.

If we take this into account, we have the possibility of coalitions moving
to preempt the moves of other coalitions. For example, let N= {1,2},
Z={a,b,c},a—band a— 3¢ and a<,c<, b and b <, c <, a. Here
the largest consistent set is {b, ¢}, and since a < b but a <€ ¢, starting from
the status quo of g, the prediction is that Player 1 will move to 5. But
knowing this, Player 2 might preempt Player 1 by moving to c¢: even
though it is worse than a, at least it is better than b. A coalition might
move from a good outcome to a bad outcome to keep another coalition
from moving to a worse outcome.

Without further development, it is unclear whether in response to these
issues we should require more from the game definition or more from the
solution concept. In any case, I think that these and other issues might first
be settled in a myopic framework, and then extended to a farsighted
framework such as in this paper. I hope I have shown that this can be a
feasible and interesting project.
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