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This paper analyzes a sequential game of coalition formation when the division of
the coalitional surplus is fixed and the payoffs are defined relative to the whole coalition
structure. Gains from cooperation are represented by a valuation which maps coalition
structures into payoff vectors. I show that any core stable coalition structure can be attained
as a stationary perfect equilibrium of the game. If stationary perfect equilibria may fail to
exist in general games, a simple condition is provided under which they exist in symmetric
games. Furthermore, symmetric stationary perfect equilibria of symmetric games generate a
coalition structure which is generically unique up to a permutation of the players. A general
method for the characterization of equilibria in symmetric games is proposed and applied to
the formation of cartels in oligopolies and coalitions in symmetric majority games.Journal
of Economic LiteratureClassification Numbers : C78, C71.© 1996 Academic Press, Inc.

1. INTRODUCTION

Since the publication ofTheory of Games and Economic Behavior, the study
of endogenous formation of coalitions has been one of the most intriguing and
challenging problems open to game theorists. Many solution concepts such as
Von Neumann and Morgenstern’s stable sets (Von Neumann and Morgenstern,
1944) and Aumann and Maschler’s bargaining set (Aumann and Maschler, 1964)
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were in fact primarily designed as ways to solve the problem of joint determina-
tion of a coalition structure and the allocation of the coalitional surplus among
coalition members. While these approaches proved fruitful in the study of many
situations of cooperation, they mostly rely on the assumption that gains from
cooperation can be defined independently of the coalitions formed by external
players.1 Using the terminology introduced by Shubik (1982), cooperative game
theory has focused on games with orthogonal coalitions which are well-suited
to situations of pure competition but fail to capture the effects of externalities
among coalitions. The objective of this paper is to propose a model of forma-
tion of coalitions in nonorthogonal games where payoffs depend on the whole
coalition structure.

The presence of externalities among coalitions introduces a new difficulty in
the study of endogenous coalition formation. When players decide to form a
coalition, they must take into account the reaction of external players to the for-
mation of the coalition. The sequential model analyzed in this paper addresses
this problem by explictly describing a procedure in which individual players,
when deciding to form a coalition, consider the consequences of their actions
on the behavior of the other players. However, to keep the analysis tractable and
concentrate on the role played by externalities on the formation of the coalition
structure, I do not model the allocation of the coalitional surplus among mem-
bers of a coalition, and assume instead that the coalitional worth is distributed
according to a fixed sharing rule. Gains from cooperation are then represented
by a valuation which maps coalition structures into vectors of individual payoffs.

Arguably, the assumption that payoffs are determined by a fixed rule is very
restrictive and may seem a high price to pay for allowing externalities among
coalitions. But valuations arise naturally in two distinct categories of economic
models and the study of coalition formation in games represented by a valuation
may appear fruitful in the resolution of these models.

First, valuations are considered in the models of coalition formation studied
by Myerson (1978), Shenoy (1979), Hart and Kurz (1983) and Aumann and
Myerson (1988). In these models, the formation of coalitions is viewed as a
two-stage process where players form coalition in the first stage and decide
on the allocation of the coalitional surplus, given a fixed coalition structure,
in the second stage. Hence, at the time coalitions are formed, players evaluate
the payoffs they receive in each coalition structure according to a fixed rule.
The exact characterization of the rule employed in the second stage depends on
the situations considered in the different models. In Myerson (1978)’s threats
and settlement game, the fair settlement function assigns to each collection
of coalitions (not necessarily a coalition structure) a unique vector of payoffs.
Shenoy (1979) uses as an evaluation rule Aumann and Dr`eze (1974)’s extension

1 Two important exceptions are Thrall and Lucas (1963)’s study of games in partition function form
and Aumann and Dr`eze (1974)’s analysis of games with fixed coalition structures.
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of the Shapley Value to games with fixed coalition structures. In Hart and Kurz
(1983)’s analysis, players evaluate coalition structures according to a different
extension of the Shapley Value first analyzed by Owen (1977). In Aumann and
Myerson (1988)’s study of formation of links among players, the valuation used
is Myerson (1977)’s extension of the Shapley Value to games with cooperation
graphs of players.2

Second, valuations emerge in various applications of Game Theory to In-
dustrial Organization and Public Economics involving competing coalitions of
economic agents. The study of the formation of cartels in oligopolies leads to a
natural definition of a valuation representing, for each cartel structure, the payoffs
obtained by the firms belonging to the different cartels.3 Similarly, the formation
of associations of firms which agree to share some common resource but behave
as competitors on the market can be analyzed with the use of a valuation.4 The
analysis of the provision of local public goods in a spatial setting where members
of a community can benefit from the public goods provided in neighboring com-
munities also requires the use of a valuation.5 As a final example, the formation
of customs unions allowing national firms to compete in a market characterized
by the existence of different customs unions also leads to the definition of a
valuation.

Cooperative solution concepts for games represented by a valuation were
introduced by Shenoy (1979) and Hart and Kurz (1983) in their models of en-
dogenous coalition formation.6 To predict which coalitions will be formed, they
propose different definitions of stability of coalition structures.7 The variety of
stability concepts accounts for the fact that, in games described by a valuation,
the payoffs obtained by members of a blocking coalition depend on the reac-
tion of the external players. The solution concepts range from the core stability
concept, which supposes a very optimistic conjecture about the reaction of the
external players since players deviate if there exists a coalition structure in which
they are better off to theα stability concept which is based on pessimistic con-
jectures since a coalition only deviates when it is guaranteed to obtain a higher

2 In Myerson (1978) and Hart and Kurz (1983), the emphasis is put on the axiomatic derivation of a
reasonable valuation rather than on the first stage game of coalition formation. This paper, by contrast,
focuses on the game of coalition formation.

3 Salantet al. (1983) were the first to point out in a simple model the problems of cartel formation in
oligopolies. Yi and Shin (1995) contains a very complete description of the derivation of the valuation
in the cartel problem.

4 The study of associations of firms, which can be interpreted as Research Joint Ventures or stan-
dardization committees, is taken up in a distinct paper (Bloch, 1995).

5 Guesnerie and Oddou (1981) analyze the provision of local public goods in a model with orthogonal
coalitions but discuss the role of externalities among communities.

6 Hart and Kurz (1983) analyze strong equilibria of a noncooperative game where players simulta-
neously announce coalitions.

7 Other concepts of stability of coalition structures are surveyed in Greenberg (1995).
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payoff independently of the reaction of the other players. The study of stable
coalition structures raises three important difficulties. First, the definitions of
stability rely on ad hoc assumptions on the behavior of the other players after a
coalition has deviated. Second, all definitions of stability assume that external
players react to the formation of a coalition in a myopic way. Hence, when a
coalition forms, its members do not take into account the final result of their
decisions but only the immediate reaction of the other players. Finally, even the
less restrictive definition of stability (α stability) may not be useful, sinceα stable
coalition structures fail to exist in situations which are not easily characterized.
(Hart and Kurz (1984) give an example of a game without stable structure which
is otherwise well-behaved.)

By contrast, in this paper, I explicitly model the formation of coalitions as a
noncooperative sequential process in the spirit of Rubinstein (1982)’s alternating
offers bargaining game and its extensions ton players by Selten (1981) and
Chatterjeeet al. (1993). Players are ranked according to an exogenous rule of
order. The first player starts the game by proposing the formation of a coalition.
If all prospective members accept the proposal, the coalition is formed. If one
player rejects the proposal, she becomes the initiator in the next round. The
important feature of the game is that, once a coalition is formed, the game is
only played among the remaining players and that established coalitions may
not seek to attract new members nor break apart. Hence, by agreeing to group
in a coalition, players commit to stay in that coalition.

I restrict my attention to stationary strategies and establish the following prop-
erties of stationary perfect equilibria. I first show that, if the game always admits
a subgame perfect equilibrium, stationary perfect equilibria may fail to exist. A
sufficient condition for the game to admit a stationary perfect equilibrium is that
the valuation and all its restrictions to smaller sets of players admit core stable
structures. Furthermore, any core stable coalition structure can be reached as a
stationary perfect equilibrium of the extensive form game of coalition formation,
provided that the set of stationary perfect equilibria is nonempty. I then study
the restricted class of symmetric games where all players are ex ante identical.
In this class of games, using a result due to Ray and Vohra (1995), I provide a
simple condition under which symmetric stationary perfect equilibria exist, and
I show that the coalition structures they generate are generically unique up to
a permutation of the players. Furthermore, I provide a general method for the
characterization of the coalition structures generated by symmetric stationary
perfect equilibria in symmetric games. This method is used to derive equilib-
rium coalition structures in two situations: the formation of cartels in a symmetric
oligopoly and the symmetric majority games discussed by Hart and Kurz (1984).

The game analyzed here is similar to games of coalition formation proposed by
Selten (1981), Chatterjeeet al. (1993), Moldovanu (1992) and Winter (1993) in
the context of games in coalitional form. The games they analyze have the same
sequence of moves as the one described above. The crucial difference between
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their games and mine stems from differences in the action spaces. By fixing the
division of the payoffs, I restrict the actions of the agents to announcements of
coalitions whereas they study a more general framework where players announce
both a coalition and the division of the coalitional worth. A further difference
is due to the underlying specification of gains from cooperation since they do
not allow for externalities among coalitions. Given these differences, the results
they obtain are not directly comparable to mine.

Different extensive form procedures of coalition formation in games repre-
sented by a valuation were proposed by Aumann and Myerson (1988) and Shin
and Yi (1995). The procedure in Aumann and Myerson (1988) is defined for
games where players evaluate cooperation graphs rather than coalition struc-
tures. The particular feature of cooperation graphs where coalition members
need not unanimously agree to admit new members leads them to define a game
where links can be formed at any stage. This approach cannot easily be applied
to situations where gains from cooperation accrue when coalitions are formed,
rather than bilateral links among players. Yi and Shin (1995) analyze games
based on a “matching procedure.” Players announce coalitions and coalitions
are formed whenever all its members have made identical announcements. In
general, the equilibria they obtain are very different from the equilibria of the
infinite horizon game analyzed in this paper.

The paper is organized as follows. The game of sequential formation of coali-
tions is introduced and the equilibrium concept defined in Section 2. In Section 3,
I analyze the relations between stationary perfect equilibria and stability con-
cepts for coalition structures in games described by a valuation. Section 4 is
devoted to the analysis of symmetric games. I present applications of the model
to the formation of cartels in oligopolies and of coalitions in symmetric major-
ity games in Section 5. My concluding remarks and some directions for future
research appear in Section 6.

2. SEQUENTIAL FORMATION OF COALITIONS

In this section, I introduce the sequential game of coalition formation and
the equilibrium concept that I will use. The set of players is denotedN, with
cardinalityn. The indexi will refer to the players. Acoalition T is a nonempty
subset of players. Acoalition structureπ is a partition on the setN. The set
of all coalition structures is denoted by5. For any subsetK of N, the set of
partitions onK is denoted5K with typical elementπK .

Gains from cooperation are described by avaluationv which maps the set
of coalition structures5 into vectors of payoffs in<n. The componentvi (π)

denotes the payoff obtained by playeri if the coalition structureπ is formed.
I assume that payoffs are normalized so that any player, by opting to leave the
game can get a strictly positive payoff. Formally,∀i ∈ N, minπ⊃{{i }} vi (π) > 0.
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A rule of orderρ is an ordering of the players, which is used to determine the
order of moves in the sequential game of coalition formation.

The sequential game of coalition formation is defined by the exogenous specifi-
cation of the valuationv and of the rule of orderρ. To emphasize this dependence,
I denote the game of coalition formation by0(v, ρ).

The game0(v, ρ) proceeds as follows. The first player according to the rule
of orderρ starts the game by proposing the formation of a coalitionT to which
she belongs. Each prospective member responds to the proposal in the order
determined byρ. If one of the player rejects the proposal, she must make a
counteroffer and propose a coalitionT ′ to which she belongs. If all members
accept, the coalition is formed. All members ofT then withdraw from the game,
and the first player inN \ T starts making a proposal.8

This game describes in the simplest way a procedure where coalitions are
formedin sequence. The main characteristic of the game is that, once a coalition
has been formed, the game is only played among the remaining players. The
extensive form thus embodies a high degree of commitment of the players. When
players agree to join a coalition, they are bound to remain in that coalition. They
can neither leave the coalition nor propose to change the coalition at later stages
of the game. Figure 1 depicts the extensive form of the game with three players.

A history ht at datet is a list of offers, acceptances and rejections up to period
t. At any point in the game0(ρ, v), a historyht determines

• a setK̂ (ht) of players who have already formed coalitions
• a coalition structureπK̂ (ht ) formed by the players in̂K (ht)

• an ongoing proposal (if any)̂T(ht)

• a set of players who have already accepted the proposal
• a player who moves at periodt .

Playeri is calledactiveat historyht is it is her turn to move after the history
ht . The set of histories at which playeri is active is denotedHi .

A strategyσi for playeri is a mapping fromHi to her set of actions, namely

σi (h
t) ∈ {Yes, No} if T̂(ht) 6= ∅

σi (h
t) ∈ {T ⊂ N \ K̂ (ht), i ∈ T} if T̂(ht) = ∅.

When T̂(ht) 6= ∅, player i is a respondent to the offer̂T(ht) and she can
choose to accept or reject it. If̂T(ht) = ∅, either a coalition has just formed and
playeri is the first player inN \ K̂ (ht) according to the rule of orderρ, or player

8 Each time a coalitionT is proposed, the order of responses is fixed byρ independently of the
history or the identity of the proposer. Hence, for example, if player 2 proposes the formation of a
coalition{1, 2, 3}, player 1 responds first and player 3 responds after player 1.



96 FRANCIS BLOCH

FIG. 1. The game0.

i has just rejected an offer. In both cases, it is her turn to propose a new coalition
T which must be a subset of the remaining players to which she belongs.

I restrict my attention to strategies which only depend on the payoff-relevant
part of the history. For a playeri active at historyht , the only payoff-relevant
features of the history are the setK of players who left the game, the partition
πK representing the coalitions they formed and the current offerT . In particular,
the set of players who have already accepted the offerT is uniquely determined
by the rule of orderρ.

A strategyσi is stationary if it only depends on the states = (K , πK , T)

whereK is a (possibly empty) subset ofN, πK is a partition ofK andT is a
(possibly empty) subset ofN \ K . Formally, lettingT (i, K ) define the collection
of subsets ofN \ K to which playeri belongs, a stationary strategy is a mapping
from the set of states at which playeri is active,Si , to a set of actions, where

σi (K , πK , T) ∈ {Yes, No} if T 6= ∅

σi (K , πK , ∅) ∈ T (i, K ).

Any strategy profileσ = {σi }i ∈N determines an outcome(π(σ ), t (σ )) of the
game. If the game ends in a finite number of periods,π(σ) is a coalition structure
on the setN, andt (σ ) is the period at which the agreement has been reached.
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I assume that players do not discount the future. In the case of an infinite play
of the game, players who have not formed a coalition receive a payoff of zero.
More precisely, suppose that a subsetN \ K of the players does not reach an
agreement in a finite number of periods. Payoffs are then given by

vi (π(σ )) = 0 for all players in N \ K

vi (π(σ )) = maxπK ⊂π vi (π) for all players in K .

DEFINITION 2.1. A subgame perfect equilibriumσ ∗ is a strategy profile such
that∀i ∈ N, ∀ht ∈ Hi , ∀σi , vi (π(σ ∗

i (ht), σ ∗
−i )) ≥ vi (π(σi (ht), σ ∗

−i )).

DEFINITION 2.2. A stationary perfect equilibriumσ ∗ is a subgame perfect
equilibrium where∀i ∈ N, σ ∗

i is a stationary strategy.

A coalition structureπ generated by a subgame perfect equilibrium is called
an equilibrium coalition structure(ECS). Coalition structures generated by
stationary perfect equilibria are calledstationary equilibrium coalition struc-
tures(SECS). The set of stationary equilibrium coalition structures is denoted
SECS(v, ρ)

Remark2.3. Since every player obtains a higher payoff by leaving the game
than by disagreeing forever, an infinite play of the game cannot be part of a
subgame perfect equilibrium. Hence, the concept of an equilibrium coalition
structure is well defined.

The payoffs of the game described above are not continuous at infinity. Hence
the existence of a subgame perfect equilibrium is not guaranteed. To circumvent
this difficulty, I first show that any subgame perfect equilibrium of the game
with sufficiently high discounting is a subgame perfect equilibrium of the game
0(v, ρ). To be more precise, let0δ(v, ρ) denote the game where strategies and
moves are defined as above but payoffs are given by:vi (σ ) = δ

t (σ )
i vi (π(σ )).

PROPOSITION2.4. There existsδ ∈ (0, 1) such that, if ∀i, δi > δ, any sub-
game perfect equilibrium of0δ(v, ρ) is a subgame perfect equilibrium of0(v, ρ).

Proof. Observe first that, since5 is finite, the set of payoffs of the game,
v(5) is finite. Hence, the set of possible coalition structures formed in0δ(v, ρ)

is finite. In particular, this implies that, asδ varies continuously from 0 to 1,
the strategy profiles of the game can only lead to a finite number of coalition
structures. Hence, there exists aδ such that, for allδ, δ′ > δ, if σ ∗ is a subgame
perfect equilibrium of0δ(v, ρ), thenσ ∗ is a subgame perfect equilibrium of
0δ′(v, ρ).

Consider nowδ′ > δ, and letσ ∗ be a subgame perfect equilibrium of0δ′(v, ρ).
Then, for any playeri , any historyht in Hi , any strategyσi and anyδ ∈ [δ′, 1),

δ
t (σ ∗

i (ht ),σ ∗
−i )

i vi (π(σ ∗
i , σ ∗

−i )) ≥ δ
t (σi (ht ),σ ∗

−i )

i vi (π(σi , σ
∗
−i )).
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Taking limits asδ goes to 1,

vi (π(σ ∗
i (ht), σ ∗

−i )) ≥ vi (π(σi (h
t), σ ∗

−i )).

Hence,σ∗ is a subgame perfect equilibrium of0(v, ρ).

COROLLARY 2.5. For any valuationv and any rule of orderρ, there exists a
subgame perfect equilibrium of the game0(v, ρ).

Proof. Fix a δ > δ. The game0δ(v, ρ) is a finite action game of perfect
information and is continuous at infinity. Hence, by a result of Fudenberg and
Levine (1983) (Corollary 4.2, p. 262), the game0δ(v, ρ) has a subgame perfect
equilibrium. From Proposition 2.4, any subgame perfect equilibrium of0δ(v, ρ)

is a subgame perfect equilibrium of0(v, ρ).

By imposing stationarity, I require that strategies only depend on the payoff-
relevant part of the history. In the framework analyzed here, the payoff-relevant
part of the history is summarized by the states characterizing the coalition
structure formed by the previous players and the ongoing offer. Chatterjeeet al.
(1993) and Moldovanu (1992) show that, when players bargain over the division
of the coalitional worth, the set of nonstationary perfect equilibria may be very
large, and stationarity is a useful restriction to refine the set of subgame perfect
equilibria. A striking aspect of the game analyzed here is thatstationary perfect
equilibria may fail to exist. This point is illustrated by the following example.

EXAMPLE 2.6. N = {a, b, c}, andρ definesa < b < c.

π va(π) vb(π) vc(π)

a|b|c 1 1 1

ab|c 3 2 1

ac|b 2 1 3

a|bc 1 3 2

abc 1 1 1

In this example, playera wants to form a coalition with playerb, playerb
with playerc, and playerc with playera.

To show that the game0(v, ρ) does not admit any stationary equilibrium
coalition structure, observe first that the three coalition structures{{a, b, c}},
{{a}, {b}, {c}} and {{a}, {b, c}} cannot be supported by any equilibrium since
playera would benefit from deviating and offering the formation of the coali-
tion {a, c} which playerc would accept. The two other coalition structures
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{{a, b}, {c}} and {{a, c}, {b}} can be supported by equilibria in nonstationary
strategies but not by a stationary perfect equilibrium. For{{a, b}, {c}} to be sup-
ported by a stationary perfect equilibrium, it must be that playerc rejects the
offer {b, c}. But, in equilibrium, playerc will only reject the offer{b, c} if
playera accepts the offer{a, c}. By stationarity, playerb accepts the offer{a, b}
irrespective of the history of rejections which have preceded it. Hence, since
playerb always accepts the offer{a, b}, playera cannot accept the offer{a, c}.
Similarly, the coalition structure{{a, c}, {b}} is only supported by a strategy
prescribing that playerb rejects the offer{a, b}, implying that playerc accepts
the offer{b, c}. Since, by stationarity, playera always accepts the offer{a, c},
playerc should reject the offer{b, c}. Hence, the game0(v, ρ) does not admit
any stationary perfect equilibrium.

However, the coalition structures{{a, b}, {c}} and {{a, c}, {b}} can be sup-
ported by equilibria in nonstationary strategies.9 To support these coalition struc-
tures as equilibria, one only needs to allow players to condition their actions on
the number of times they have received an offer. Consider first the coalition
structure{{a, b}, {c}} and the following strategies. Playera always accepts the
offer {a, b} and proposes{a, b}. She rejects{a, b, c} and accepts{a, c} when, in
the historyht , she has made the offer{a, b} to playerb anoddnumber of times.
Playerb accepts{b, c} and proposes{b, c}. She rejects{a, b, c} and only accepts
{a, b} if, in the historyht , the offer{a, b} has been made by playera an odd
number of times. Playerc accepts{a, c} and proposes{a, c}. She rejects{a, b, c}
and only accepts{b, c} if, in the historyht , playera has made the offer{a, b} an
evennumber of times. These strategies form a subgame perfect equilibrium of
the game (in nonstationary strategies), and are depicted in Figure 2. A strategy
profile supporting the coalition structure{{a, c}, {b}} can be constructed in a
similar way.

In Example 2.6, the three players play a symmetric role. Hence, no change in
the rule of order can guarantee the existence of a stationary perfect equilibrium.
Moreover, Example 2.6 is generic, since the nonexistence of a stationary perfect
equilibrium is robust to small variations of the valuation. Nonexistence of sta-
tionary perfect equilibria is thus a robust phenomenon in games with more than
three players.

Note however that the nonexistence of a stationary perfect equilibrium in
pure strategies in Example 2.6 is linked to the fixed sharing rule. If players
were allowed to bargain freely over the worth of the coalition in a game with
transferable utility, the nonexistence result would disappear.

The central feature of Example 2.6 is the disagreement among players over
the coalitions which should be formed. A similar problem was noted by Shenoy
(1979) in Apex games, where a single big player faces a number of small play-

9 These strategies are closely related to strategies constructed by Shaked to support any division of
the payoffs in a three-person bargaining game (Sutton (1986)).
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FIG. 2. Nonstationary equilibrium strategies supporting the coalition structure{{a, b}, {c}}.
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ers (Example 7.5, p. 150). The preferred coalition for the big player is the grand
coalition, since it offers her the possibility of diluting the power of the small play-
ers. Small players, on the other hand, would rather form a two-member coalition
with the big player. This disagreement among players about the coalition which
should be formed leads, as in Example 2.6, to the nonexistence of a stationary
perfect equilibrium. This suggests that a sufficient condition for the existence
of an equilibrium coalition structure is high degree of unanimity among players
about the coalitions they wish to form. While this point is not pursued here, the
class of symmetric games analyzed in Section 4 provides an example of games
where players unanimously agree on the coalitions they want to belong to.

3. STABLE COALITION STRUCTURES

In this section, I compare the equilibrium coalition structures with coalition
structures satisfying cooperative concepts of stability. Concepts of stability in
games with externalities require a specification of the reaction of external play-
ers to the formation of a coalition, and different assumptions on the behavior
of external players give rise to different definitions of stability. Kurz (1988)
distinguishes five models of reaction of the external players. The core stability
concept, first introduced by Shenoy (1979), is based on the following dominance
relation. A coalition structureπ dominates a coalition structureπ ′ if there exists
a coalition inπ whose members receive strictly higher payoffs than inπ ′. A
coalition structure is calledcore stableif it belongs to the core of the dominance
relation. In effect, this definition of stability is very restrictive, since it assumes
that, when a group of players deviate, they consider that external players react
in such a way as to maximize the payoff of deviating players.

Hart and Kurz (1983) propose four models of reaction of the external players.
In theγ model, coalitions which are left by some members dissolve. In theδ

model, members of coalitions which lose members remain together and form
smaller coalitions. The last two stability concepts are based on theβ and the
α cores.10 In the β model, a groupK of players deviates if, for any possible
reaction of the external players, namely any coalition structureπN\K of N \ K ,
there exists a coalition structure ofK , πK , such that all members ofK are better
off in the new coalition structureπ = πN\K ∪ πK . In theα definition, a group
K of players deviates if there exists a coalition structureπK such that, whatever
the reaction of the external players, members ofK are better off forming the
coalition structureπK .

Letting, for any fixed valuationv, the sets of Core stable,γ stable,δ stable,
β stable andα stable coalition structures be denoted byCC(v), Cγ (v), Cδ(v),

10 See Aumann (1967) for a complete description of theα andβ core concepts.
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Cβ(v) andCα(v), the following lemma is easily established.11

LEMMA 3.1. For any valuationv,CC(v) ⊂ (Cγ (v) ∪ Cδ(v)) ⊂ Cβ(v) ⊂
Cα(v).

I will focus here on the two extreme concepts of core andα stability.12 For-
mally, a coalition structureπ is core stableif there does not exist a coalition
K and a coalition structureπ ′ such thatK ∈ π ′ and∀i ∈ K , vi (π

′) > vi (π).

A coalition structureπ is α stableif there does not exist a coalitionK and a
partitionπ ′

K on K such that,∀i ∈ K , ∀πN\K ∈ 5N\K , vi (π
′
K ∪ πN\K ) > vi (π).

The next proposition shows that, when the set of stationary equilibrium coali-
tion structures is nonempty, it contains the set of core stable structures.

PROPOSITION3.2. Assume that there exists a rule of orderρ such that
SE SC(v, ρ) 6= ∅. Then CC(v) ⊂ SECS(v, ρ).

Proof. Let ρ̃ denote one rule of order for whichSECS(v, ρ̃) 6= ∅. Let π̃

denote a coalition structure inCC(v). To prove the proposition, I construct a
stationary perfect equilibriumρ̃ of the game0(v, ρ̃) such thatπ(σ̃ ) = π̃ . I
denote byT(i ) the coalition to which playeri belongs in the coalition structure
π̃ . A partition πK of a subsetK of the players is called asubpartitionof π̃ if
it is formed by the union of elements ofπ̃ . The set of all subpartitions of̃π is
denotedSub(π̃). Pick a stationary perfect equilibrium̃̃σ of the game0(v, ρ̃).

A stationary strategỹσi for playeri is then constructed as follows.
Assume that a subsetK of players, wherei 6∈ K , has already formed a

coalition structureπK .

If πK 6∈ Sub(π̃), σ̃i (K , πK , ·) = ˜̃σ i (K , πK , ·)

If πK ∈ Sub(π̃), σ̃i (K , πK , φ) = T(i )

σ̃i (K , πK , T(i )) = Yes

σ̃i (K , πK , T ′) = Yes if vi (π(T ′)) > vi (π̃)

σ̃i (K , πK , T ′) = No if vi (π(T ′)) ≤ vi (π̃),

whereπ(T ′) is the coalition structure generated by˜̃σ after the coalitionT ′ has
been formed.

11 Hart and Kurz (1983) derive the last three inclusions of the Lemma. The first inclusion is imme-
diate, once one reinterprets the core stability concept in terms of reaction of the external players to the
deviation of a group of players.

12 The absence of coincidence betweenα stable structures and equilibrium coalition structures can
be extended to the intermediate concepts ofβ, γ , andδ stability.
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The strategỹσ prescribes that playeri follows her part of a stationary perfect
equilibrium ˜̃σ if a coalition structureπK off the equilibrium path has been formed,
and that she forms the coalitionT(i ) otherwise.

It remains to check that̃σ is a subgame perfect equilibrium of the game
0(v, ρ̃). Observe first that, sincẽ̃σ is a stationary perfect equilibrium profile,
the strategy profilẽσ is a subgame perfect equilibrium if a coalition structure off
the equilibrium path has been formed. Suppose now that the previous players
have formed a coalition structureπK in Sub(π̃). To check that̃σ is a subgame
perfect equilibrium on the equilibrium path, consider the possible deviations for
playeri .

Playeri can deviate by announcing a coalition structureT ′ 6= T(i ) when it
is her turn to announce a coalition. However, sinceπ̃ is a core stable structure,
there exists a playerj in T ′ such thatvj (π(T ′)) ≤ vj (π̃). Hence, any coalition
T ′ different fromT(i ) will be rejected.

If now playeri receives an offerT(i ), any deviation will lead to the formation
of the coalitionT(i ), since any different offer by playeri will be rejected by
some player.

Finally, suppose that playeri receives an offerT ′ 6= T(i ). If vi (π(T ′)) ≤
vi (π̃), she cannot benefit from accepting the offer. If all other members of
T ′ accept the offer, the coalitionT ′ is formed and playeri obtains a payoff
vi (π(T ′)), whereas, by rejecting the offer, playeri obtains the payoffvi (π̃). If
vi (π(T ′)) > vi (π̃), playeri should accept the offer, since her rejection would
lead to the formation of the structurẽπ, whereas her acceptance may either
secure the formation ofπ(T ′), if no player following playeri rejects the offer
T ′, or yield the formation ofT(i ), if some player following playeri rejects the
offer T ′.

Since playeri has no incentive to deviate from her strategyσ̃i , the strategy
profileσ̃ forms a subgame perfect equilibrium of the game0(v, ρ̃). Furthermore,
by construction,π(σ̃ ) = π̃ . Hence,CC(v) ⊂ SECS(v, ρ̃).

In the statement of Proposition 3.2, I require the set of stationary perfect equi-
libria to be nonempty. This assumption is needed to show that, once a coalition
structure is formed off the equilibrium path, the game still admits a stationary
perfect equilibrium. The following example shows that the assumption cannot
be relaxed.

EXAMPLE 3.3. N = {a, b, c, d}.
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π va(π) vb(π) vc(π) vd(π)

abcd 5 5 5 5

a|bc|d 1 3 2 1

a|b|cd 1 1 3 2

a|bd|c 1 2 1 3

Others 1 1 1 1

The game of Example 3.3 admits a unique core stable structure, the grand
coalition which Pareto dominates any other coalition structure. However, the
subgame following the formation of the coalition{a} is identical to the game in
Example 2.6 and does not admit any stationary perfect equilibrium.

The difficulty illustrated by Example 3.3 can be alleviated by assuming that,
in addition to the valuationv, all restrictions of the valuation to subsets of
the players admit a core stable structure.13 Since payoffs depend on the whole
coalition structure, the restriction of the valuationv to a subsetK of the players
must entail a description of the partition formed by the external players.

The restrictionof the valuationv to a subsetK of the players relative to the
coalition structureπN\K is defined as follows.v(K , πN\K ): 5K → <|K |, where
v(K , πN\K )i (πK ) = vi (πK ∪ πN\K ).

LEMMA 3.4. Letv be a valuation such that CC(v) 6= ∅, and, for any restric-
tion v′ of v, CC(v′) 6= ∅. Then, for any rule of orderρ, SECS(v, ρ) 6= ∅.

Proof. Let ρ be a fixed rule of order. I construct a stationary perfect equi-
librium strategy profile. For any restrictionv′ of v to a subsetK of the players,
relative to the coalition structureπN\K , pick a core stable structure. This core
stable structure is denoted byCS(πN\K ), and, for any playeri in K , T(i, πN\K )

denotes the coalition playeri belongs to inCS(πN\K ).

Construct a stationary strategy profileσ as follows.

σi (N \ K , πN\K , ∅) = T(i, πN\K )

σi (N \ K , πN\K , T(i, πN\K )) = Yes

σi (N \ K , πN\K , T ′) = Yes if vi (CS(πN\K ∪ T ′)) > vi (CS(πN\K ))

σi (N \ K , πN\K , T ′) = No if vi (CS(πN\K ∪ T ′)) ≤ vi (CS(πN\K )).

13 This requirement is very similar to the condition of total balancedness for games without
externalities.
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To show thatσ forms a subgame perfect equilibrium, consider all possible
deviations for playeri .

If player i proposes a coalitionT ′ 6= T(i, πN\K ), one of the members ofT ′

will reject the offer, sinceCS(πN\K ) is a core stable structure. Hence, playeri
cannot benefit from announcing a coalition different fromT(i, πN\K ). Similarly,
by rejecting the offerT(i, πN\K ), playeri cannot obtain a higher payoff since
the only coalition she can announce is the coalitionT(i, πN\K ).

Suppose now that playeri receives an offerT ′ off the equilibrium path. By the
same argument as in Proposition 3.2, she should accept the offer only if the payoff
she receives in the final coalition structure is higher than the payoff she receives
in CS(πN\K ). The final coalition structure obtained after the formation ofT ′,
given the construction of the strategies, is the coalition structureCS(πN\K ∪T ′).
Hence, no deviation from the strategyσi can be profitable and the constructed
strategy profileσ is a stationary perfect equilibrium.

Proposition 3.2 and Lemma 3.4 immediately lead to the following corollary.

COROLLARY 3.5. Let v be a valuation such that CC(v) 6= ∅, and, for all
restrictions v′ of v, CC(v′) 6= ∅. Then, for any rule of orderρ, CC(v) ⊂
SECS(v, ρ).

Lemma 3.4 provides a sufficient condition for the existence of an equilibrium
coalition structure. Corollary 3.5 shows that any core stable structure of a valua-
tion v whose restrictions also admit core stable structures can be reached as the
outcome of a stationary perfect equilibrium of the game of coalition formation.
In the case ofα stability, no such result can be expected. The following example
shows that the sets of stationary equilibrium coalition structures and ofα stable
structures may be nonempty and disjoint.

EXAMPLE 3.6. N = {a, b, c, d, e}.
π va(π) vb(π) vc(π) vd(π) ve(π)

ab|cd|e 4 4 3 3 1

a|bc|d|e 1 5 5 4 1

ae|bc|d 1 5 5 4 1

a|bc|de 1 1 1 5 5

ac|b|de 1 2 1 1 1

a|b|c|de 1 2 1 1 1

Others 1 1 1 1 1
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The game admits threeα stable structures{{a}, {b, c}, {d}, {e}}, {{ae}, {bc},
{d}} and{{a}, {bc}, {de}}. To check that the coalition structure{{a}, {b, c}, {d},
{e}} is α stable, observe that the only players who have an incentive to deviate
are playersd ande, who may want to form a coalition. However, their deviation
is prevented by the formation of the coalition structure{{a, c}, {b}} by the three
other players. The coalition structure{{ae}, {bc}, {d}} is α stable for the same
reason. The structure{{a}, {bc}, {de}} isα stable because the only two profitable
deviations can be prevented by the external players. If playersa andb form
the coalition{a, b}, the three other players can react by forming the structure
{{c}, {d}, {e}}, inducing a payoff of 1 for the two deviating players. If playerb
decides to break the coalition with playerc, the four external players can form
the coalition{a, b, c, d} which yields a payoff of 1 for playerb.

These three coalition structures are the onlyα stable structures of the game.
The coalition structure{{a, b}, {c, d}, {e}} is notα stable since playersb, c and
d can deviate and form the structure{{b, c}, {d}} in which they are guaranteed
to obtain higher payoffs. All other coalition structures are Pareto dominated by
the coalition structure{{a, b}, {c, d}, {e}} and hence are notα stable.

I now claim that the unique stationary equilibrium coalition structure of the
game, independently of the rule of orderρ, is the coalition structure{{a, b},
{c, d}, {e}}. Two cases must be distinguished, one whereρ assigns as the first
playera or b, one wherec, d or e are chosen to start the game. If playera starts
the game, playera should offer the formation of a coalition{a, b}. This offer
will be accepted by playerb, since, if playerb were to form the coalition{b, c},
playersd ande would form a coalition, inducing a payoff of 1 for playerb.

Given that playersa andb have formed a coalition, playerc should offer to form
a coalition with playerd, who will accept. Hence, in equilibrium, the coalition
structure{{a, b}, {c, d}, {e}} is formed. The same line of reasoning applies when
playerb starts the game.

If now playerc starts the game, she should offer the formation of the coalition
{c, d}, since the offer{b, c} will be rejected by playerb. This offer will be
accepted by playerd. In fact, playerd has no incentive to form the coalition
{d, e} since this induces playerb to form the coalition{b}. Once the coalition
{c, d} is formed, playersa andb form the coalition{a, b}, yielding the coalition
structure{{a, b}, {c, d}, {e}}. A similar line of reasoning applies to the cases
whered ande start the game.

Example 3.6 is robust to small variations of the valuation. Hence there exists a
class of valuationsv, such thatSE SC(v, ρ) 6= ∅, Cα(v) 6= ∅ andSECS(v, ρ)∩
Cα(v) = ∅.

The absence of coincidence between the sequential game of coalition forma-
tion and the model ofα stability stems from two countervailing forces in the
definitions of deviations. On the one hand, deviations in the sequential model
areeasierto obtain, because the external players who have already formed a
coalition cannot freely react to the deviation. This suggests that there may ex-
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ist α stable structures which cannot be outcomes of subgame perfect equilibria
of the game. In Example 3.6, the coalition structures{{a}, {b, c}, {d}, {e}} and
{{ae}, {bc}, {d}} are not stationary equilibrium structures, because, once players
a, b andc have left the game, playersd andecan deviate and form the coalition
{d, e}. Similarly, the coalition structure{{a}, {bc}, {de}} cannot be obtained in
a stationary perfect equilibrium, becauseb has an incentive to deviate after the
coalition{d, e} has been formed.

On the other hand, deviations in the sequential model areharder to obtain,
because group deviations are not allowed, and players look forward to the fi-
nal consequences of their deviations. Hence stationary equilibrium coalition
structures are not necessarilyα stable. In Example 3.6, the coalition structure
{{a, b}, {c, d}, {e}} is notα stable, because playersb, c andd may deviate jointly
and form the coalition structure{{a}, {b, c}, {d}, {e}}.

4. SEQUENTIAL FORMATION OF COALITIONS IN SYMMETRIC
GAMES

In this section, I analyze the formation of coalitions in the restricted class
of symmetric games. Symmetric games are described by valuations where all
players are ex ante identical. Hence, the payoffs received by the players only
depend on coalition sizes and not on the identity of the coalition members.

Formally, let p denote apermutationof the players inN. For any coalition
structureπ of N, let pπ denote the coalition structure obtained by permuting the
players according top. A valuationv issymmetricif and only if∀i ∈ N, vi (π) =
vpi (pπ).

A symmetric gameis a game described by a symmetric valuation. Observe
that in symmetric games all members of a coalition receive the same payoff
and payoffs only depend on the sizes of the coalitions. An important feature
of symmetric games is that two coalition structures which only differ by the
distribution on the players in the coalitions generate the same payoff distribution.
This leads to the notion ofequivalenceof coalition structures in symmetric
games.

Two coalition structuresπ andπ ′ are calledequivalentif there exists a per-
mutation p of the players inN such thatπ ′ = pπ. Two equivalent partitions
are said to be equal up to a permutation of the players. The equivalence class
of a coalition structureπ is denoted byeq(π). If the valuationv is symmetric,
two equivalent partitions generate the same distribution of payoffs. Hence, in
symmetric games, the study of coalitions can be restricted to the study of equiv-
alence classes of partitions. An equivalence class of partitions can be identified
with a list of coalition sizes, that is a sequence of positive integers adding up
to n. I assume that the rule of orderρ is fixed, and let the players be indexed
by the ordered setI = 1, 2, . . . , n. This can be done without loss of generality,
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since any coalition structure emerging as an equilibrium of the game0(v, ρ ′),
for ρ ′ 6= ρ, is equivalent to a coalition structure generated by an equilibrium of
the game0(v, ρ). Since the rule of orderρ is fixed, the game0 will only be
indexed by the valuationv.

Since in a symmetric game, all players are ex ante identical, I restrict my
attention to symmetric equilibria where all players adopt similar strategies. For-
mally, a strategy profileσ = {σi }i ∈N is calledsymmetricif and only if (i) at any
two statess = (K , πK , T), s′ = (K , πK , T ′) with |T | = |T ′| 6= 0, for any two
playersi ∈ T , j ∈ T ′, σi (s) = σj (s′) and (ii) at any states = (K , πK , ∅), for
any two playersi, j /∈ K |σi (s)| = |σj (s)|. In words, a strategy profile is sym-
metric if, at any state, all responders adopt the same strategy and all proposers
announce coalitions of the same size. The set of coalition structures supported
by symmetric stationary perfect equilibria is denotedSSECS(v).

I first show that, in a symmetric game, any symmetric stationary perfect equi-
librium coalition structure can be reached as the outcome of a finite game of
choice of coalition sizes. Furthermore, under a simple condition proposed by Ray
and Vohra (1995), any equilibrium outcome of the game of choice of coalition
sizes can be obtained as a symmetric stationary equilibrium coalition structure
of the sequential game of coalition formation. Using this equivalence, I derive a
sufficient condition under which a symmetric game admits a symmetric station-
ary equilibrium coalition structure and prove that this structure is generically
unique.

The game of choice of coalition sizes1(v) is described as follows. Player 1
starts the game and chooses an integerk1 in the interval [1, n]. Playerk1+1 then
moves and chooses an integerk2 in the set [1, n−k1]. Playerk1 +k2 +1 chooses
at the next stage an integerk3 in the set [1, n − k1 − k2]. The game continues
until the sequence of integers(k1, k2, . . . , kj , . . . , kJ) satisfies

∑
kj = n. The

game for three players is depicted in Fig. 3.
A strategyτi for player i in the game1(v) is a mapping from the set5i −1

to the set of integers in the interval [1, n − i − 1]. In words, for any coalition
structureπi −1 of the firsti −1 players, playeri chooses a coalition sizeτi (πi −1).

All players need not be called to announce coalition sizes in the game. Observe,
however, that, for any strategy profileτ, a single coalition structureπ(τ) is
formed. The payoffs received by the players are then given byvi (π(τ)).

A strategy profileτ ∗ is a subgame perfect equilibriumif and only if for
all players i, for all coalition structuresπi −1 in 5i −1 and for all strategies
τi , vi (π(τ ∗

i (πi −1), τ
∗
−i )) ≥ vi (π(τi (πi −1), τ

∗
−i )). As before, a coalition structure

generated by a subgame perfect equilibriumτ ∗ is called anequilibrium coalition
structureof the game1(v). The set of equilibrium structures of1(v) is denoted
ECS′(v).

LEMMA 4.1. For any symmetric valuationv, ECS′(v) 6= ∅.
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FIG. 3. The game1.

Proof. The game1(v) is a finite game of perfect information with perfect
recall. Hence it admits a subgame perfect equilibrium in pure strategies.

In the next proposition, I show that any symmetric stationary equilibrium
coalition structure of the game0(v) can be reached as an equilibirum coalition
structure of the game1(v), up to a permutation of the players.

PROPOSITION4.2. For any coalition structureπ in SSECS(v) there exists a
coalition structureπ ′ equivalent toπ such thatπ ′ ∈ ECS′(v).

Proof. Let σ be the symmetric stationary perfect equilibrium of the game
0(v) supporting the coalition structureπ . I first show that the strategy pro-
file σ cannot involve any delay and that all offers prescribed byσ are ac-
cepted. Suppose to the contrary that some playeri rejects an offerT with
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|T | ≥ 2 at some states = (K , πK , T). Since the strategy profileσ is sym-
metric, |σi (K , πK , ∅)| = |T | and for all playersj ∈ σi (K , πK , ∅), we have
σj (K , πK , σi (K , πK , ∅)) = σi (K , πK , T) = No. Hence offers are continuously
rejected and the play of the game is infinite yielding a payoff of 0 to playeri .
Since however minπ⊃{{i }} vi (π) > 0, player i has an incentive to deviate and
leave the game. This shows that, at a symmetric equilibriumσ , all offers are
accepted. Hence the strategyσ can be described by a list of offers made by the
players at all states where they are proposers.

As a second step, I show that we can assume without loss of generality that, at
any two equivalent statess = (K , πK , ∅)ands′ = (K ′, π ′

K , ∅)where|K | = |K ′|
and the two coalition structuresπK andπK ′ are equivalent,|σi (s)| = |σi (s′)|. To
see this first reorder the players according to a rule of orderρ̂ consistent with
the order in which the coalition structureπ is formed. Now, for any setK with
i /∈ K , let K̂ denote the first̂ρ-elements inN \ {i } and, for any partitionπK

of K , let π̂K denote the equivalent partition of̂K . Construct then the strategy
σ̂i as follows. At any states = (K , πK , ∅), let σ̂i (s) be a subset ofN \ K
containingi such that|σ̂i (K , πK , ∅)| = |σ(K̂ , π̂K , ∅)|. In words, I select for
any states = (K , πk, ∅) a particular representative of the equivalence class
eq(πK ) andσ̂i assigns the action chosen for this representative state to the entire
equivalence class. Clearly, the strategyσ̂ satisfies the condition that sets of the
same cardinality are chosen at two equivalent states. Furthermore, given the
particular orderρ̂ chosen,π(σ̂ ) = π(σ). It remains to show that̂σ forms a
subgame perfect equilibrium of the game0(v). To see this, consider a state
s = (K , πK , ∅) and note that, since the strategyσ̂ is played, any action of player
i induces a unique partition of the setN \ K . Now suppose by contradiction
that σ̂i is not an optimal choice, i.e. that there exists a strategyσ̃i inducing a
partition ˜πN\K such thatvi (πK ∪ ˜πN\K ) > vi (πK ∪ ˆπN\K ) where ˆπN\K is the
coalition induced byσ̂i . Next consider a permutation̂p of the players such that
p̂K = K̂ . Since the game is symmetric,vi (p(πK ∪ ˜πN\K )) = vi (πK ∪ ˜πN\K ) >

vi (πK ∪ ˆπN\K ) = vi (p(πK ∪ ˆπN\K )), contradicting the fact thatσi is an optimal
choice at(K̂ , π̂K , ∅).

Since we may assume, by the preceding step, that the strategyσ assigns sets
of the same cardinality at any two equivalent states, we are ready to construct
a strategy profileτ in the game1(v) as follows. For any playeri and any
coalition structureπi −1 of the preceding players, letτi (πi −1) = |σi (K , πK , ∅)|.
To show thatτ forms a subgame perfect equilibrium of the game1(v), suppose
by contradiction that playeri has a profitable deviationτ ′

i 6= τi after the coalition
structureπi −1 is formed. I claim that this implies that playeri has a profitable
deviation fromσi in the game0(v). To see this, suppose that a coalition structure
πK equivalent toπi −1 has been formed and let playeri reject any offerT such
that|T | 6= τ ′

i and propose the formation of a coalitionT ′ of sizeτ ′
i . Sinceτ ′

i is a
profitable deviation in the game1(v) and lettingπ ′ denote the coalition structure
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induced by the choiceτ ′
i , we must havevi (π

′) > vi (π). Now, by symmetry, for
all players j in T ′, vj (π

′) = vi (π
′) > vi (π) = vj (π), so that playeri ’s offer is

accepted.

While Proposition 4.2 guarantees that any symmetric equilibrium can be ob-
tained as an equilibrium outcome of the game of choice of coalition sizes, it
does not imply that the equilibrium coalition structures of the game1 form
symmetric stationary equilibrium outcomes of the sequential game of coalition
formation. In fact, as noted by Ray and Vohra (1995), a stronger condition is
needed for this assertion to hold : the coalitions formed in the game1 must
have the property that the players’ payoffs are decreasing in the order in which
coalitions are formed.

PROPOSITION4.3(Ray and Vohra (1995)). Letπ be an equilibrium coalition
structure of the game1(v) with the property that players’ payoffs are decreasing
in the order in which coalitions are formed.Then there exists a coalition structure
π ′ equivalent toπ such thatπ ′ ∈ SSECS(v).

Proof. Let τ be the subgame perfect equilibrium supportingτ . Define a
strategyσi for playeri in the game0(v) as follows. At any states = (K , πK , ∅)

let playeri announce a subsetT of N \ K with |T | = τj (πj −1) for the coalition
structureπj −1 equivalent toπK . At any states = (K , πK , T) with T 6= ∅, let
σi (s) = Yes if |T | = τj (πj −1) andσi (s) = No otherwise. This strategy profile
is symmetric and yields a coalition structureπ(σ) equivalent toπ . It remains
to show that it forms a stationary perfect equilibrium of the game0(v). First
consider playeri ’s possible deviation at a states = (K , πK , ∅) when it is her
turn to make an offer. If she makes any offerT ′ such that|T ′| 6= τj (πj −1) and
|T ′| ≥ 2, her offer will be rejected. Hence playeri will belong to a coalition
formed later in the game and, by assumption, her payoff is lower than the one
she obtains in coalitionT . By the same reasoning, playeri has no incentive to
reject an offerT where|T | = τj (πj −1). Finally, consider playeri ’s response to
an offerT ′ with |T ′| 6= τj (πj −1). By rejecting the proposal and offering to form a
coalitionT of size|T | = τj (πj −1), she can secure the formation of the coalition
structureπ . Sinceτ is a subgame perfect equilibrium of the game of choice of
coalition sizes,vi (π) ≥ vi (πK ∪ ˜πN\K ) for any other coalition structure ˜πN\K

induced by the formation of a coalitionT ′ at states = (K , πK , ∅). Hence no
player has any incentive to deviate from the strategy prescribed byσ .

Propositions 4.2 and 4.3 provide a sufficient condition on the underlying valu-
ationv for the equivalence between the symmetric stationary perfect equilibrum
outcomes of the sequential game of coalition formation and the subgame perfect
equilibrium outcomes of the game of choice of coalition sizes. This result is
formally stated in the next corollary.
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COROLLARY 4.4. Suppose that, in the game1(v), players’ payoffs are de-
creasing in the order in which coalitions are formed. Then, for any coali-
tion structureπ in SSECS(v) and any coalition structureπ ′ in ECS′(v),
eq(π) = eq(π ′).

Hence, under a simple condition, the game of choice of coalition sizes pro-
vides an easy method for the construction of equilibrium coalition structures in
symmetric games. The exact nature of the restriction that players’ payoffs are
decreasing in the order in which coalitions are formed is difficult to interpret.
Ray and Vohra (1995) provide an example where the condition is violated and
the subgame perfect equilibrium outcome of the game of choice of coalition
sizes does not form a symmetric stationary perfect equilibrium of the sequential
game. However, in most economic applications of coalitions with externalities,
including the formation of cartels and of coalitions in majority games discussed
in this paper, this condition is satisfied. The equivalence result of Corollary 4.4
can now be used to establish several important properties of equilibrium coalition
structures in symmetric games.

COROLLARY 4.5. Letv be a symmetric valuation such that, in the game1(v),
players’ payoffs are decreasing in the order in which coalitions are formed. Then
SECS(v) 6= ∅.

Proof. Follows from Lemma 4.1 and Corollary 4.4.

Corollary 4.4 also leads to a simple sufficient condition for the uniqueness
of symmetric stationary equilibrium coalition structures in symmetric games. A
valuationv is calledstrict if, for any playeri, and for any two different partitions
π andπ ′, vi (π) 6= vi (π

′). In a game described by a strict valuation, every agent
receives different payoffs in different coalition structures. The next proposition
shows that the strictness condition is sufficient to guarantee the uniqueness of
the equilibrium coalition structure in the game1(v).

PROPOSITION4.6. Letv be a strict symmetric valuation. Then the game1(v)

has a unique equilibrium coalition structure.

Proof. The proof is by induction on the numbern of players. Ifn = 1, the
game1(v) has a unique subgame perfect equilibrium. Suppose now that, for any
n′ < n, the game admits a unique subgame perfect equilibrium, and consider the
first player’s choices in a game withn players. For any choice of an integerk,
the continuation game has less thann players, and thus admits a unique subgame
perfect equilibriumτ ∗({k}). Since the valuation is strict, there exists a unique
k∗, such that

v1({k∗} ∪ π(τ ∗({k∗})) > v1({k} ∪ π(τ ∗({k})) ∀k 6= k∗.

Hence then player game admits a unique subgame perfect equilibrium.
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Proposition 4.6 implies that, if the valuation is strict, all equilibrium coalition
structures of the game0(v)are equivalent. Hence I obtain the following corollary.

COROLLARY 4.7. Letv be a strict symmetric valuation such that, in the game
1(v),players’ payoffs are decreasing in the order in which coalitions are formed.
Then the game0(v) has a unique symmetric stationary equilibrium coalition
structure, up to a permutation of the players.

5. APPLICATIONS

In this section, I apply the sequential model of coalition formation to two
particular symmetric situations. I first analyze the formation of cartels in a sym-
metric Cournot oligopoly. The second application is based on Hart and Kurz
(1984)’s study of endogenous coalition formation in symmetric majority games.
In both applications, I derive the subgame perfect equilibrium of the game of
choice of coalition sizes. It is straightforward to check that players’ payoffs are
decreasing in the order in which coalitions are formed, so that the equivalence
result of Corollary 4.4 can be applied.

5.1. Cartels in a Symmetric Cournot Oligopoly

It has long been noted that the formation of cartels in oligopolies involves
a fundamental instability (See Stigler (1968)), since, once a cartel has been
formed, members of the cartel obtain a lower profit than outsiders, and hence
have an incentive to leave the cartel. Salantet al. (1983) analyze this instability
in a simple symmetric Cournot oligopoly with linear demand and homogeneous
goods, and show that there exists a minimal profitable size of the cartel which is
never lower than four fifths of the members of the industry. This cartel is however
(intuitively) unstable since members of the cartel would prefer to stay out and
let the other firms form a cartel. In the sequential model analyzed here, firms
have the power to commit to stay out of the cartel. Hence, the unique equilibrium
coalition structure predicts that firms choose to remain outside of the cartel, until
the remaining firms form the cartel of minimal profitable size.

More precisely, consider a Cournot oligopoly where firms face a linear inverse
demand curve,D = α −∑

qi , whereqi is the quantity produced by each firm
i . All firms are assumed to have a constant marginal cost ofλ. Suppose that
K cartels have formed on the market, and that the structure of cartels is given
by π = {T1, T2, . . . , Tk, . . . , TK }. Straightforward computations show that, in
equilibrium, each cartel will produceq∗

i (π) = (α − λ)/(K + 1).14 Hence, firm

14 It is important to note that the equilibrium quantity produced by each cartel only depends on the
number of cartels on the market.
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i in the cartelT(i ) of sizet (i ) obtains a payoff of

P∗
i (π) = (α − λ)2

t (i )(K + 1)2
.

The problem of cartel formation can thus be summarized by the valuation defined
by vi (π) = P∗

i (π).

PROPOSITION5.1. Any equilibrium of the game of cartel formation is char-
acterized byπ∗ = (T∗

1 , { j }j 6∈T∗
1
) where t∗1 is the first integer following(2n +

3 − √
4n + 5)/2. (If

√
4n + 5 is an integer, t∗

1 can take on the two values
(2n + 3 − √

4n + 5)/2 and(2n + 5 − √
4n + 5)/2.)

Proof. See the Appendix.

5.2. Coalitions in Symmetric Majority Games

In their study of endogenous coalition formation, Hart and Kurz (1983) advo-
cate a two-stage approach, where players evaluate their payoffs, in any coalition
structure, according to a fixed rule (Owen (1977)’s extension of the Shapley
Value to games with coalition structures), and play a game of coalition forma-
tion using the value as their expected payoff. Owen (1977)’s value differs from
Aumann and Dr`eze (1974)’s value in assuming that players bargain over the
worth of the grand coalition, as opposed to the worth of the coalition they belong
to in the coalition structure. The formation of a coalition is thus interpreted as
a way for the players to modify the environment in which they bargain over the
worth of the grand coalition.15

Owen (1977)’s value is computed, for any game in coalitional function form
w, any coalition structureπ and any playeri as

φi (w, π) = E(w(P ∪ i ) − w(P)),

where the expectation is taken over any random order which is consistent with
the coalition structureπ (i.e. ranks consecutively members of any coalition in
the coalition structure) andP is the set of predecessors ofi according to the
random order.

Hart and Kurz (1984) apply Owen (1977)’s value to analyze the formation of
coalitions in different types of games in coalitional function form. We consider
here only symmetric majority games.

DEFINITION 5.2. A symmetric majority gameM(n, m) is defined as follows.
The numbern is the total number of players, and the integerm (the majority) is

15 The axiomatic derivation of the two different values are given in Aumann and Dr`eze (1974) and
Hart and Kurz (1983). The differences are thouroughly discussed in Hart and Kurz (1983).
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any integer in the interval [(n + 1)/2, n]. The coalitional function is given by

• w(T) = 0 if t < m
• w(T) = 1 for t ≥ m,

whereT is any coalition, andt denotes the cardinality of coalitionT .

To compute the Owen value in the symmetric majority gameM(n, m), let me
consider a coalition structureπ containingK coalitions,π = {T1, T2, . . . , Tk, . . .

TK }. The total number of random orders consistent with the coalition structureπ

is K !t1!t2! . . . tk! . . . tK !, wheretk denotes the number of elements of the coalition
Tk. It is then clear that for the incremental value of playeri to be positive, it must
be that playeri is ordered at positionm in the random order. Denoting byT(i ) the
coalition playeri belongs to and lettingωi (π) denote the number of orderings
of the coalitions inπ such that a member of the coalitionT(i ) is at positionm,
I obtain the following simple expression for the Owen value

φi (π) = ωi (π)

t (i )K !
.

Hence I can now define the valuationvi (π) = φi (π). The characterization
of the equilibrium coalition structures is made difficult by the lack of structure
of the functionωi (π). In the absence of general characterization results, Table I
describes the equilibrium coalition structures of any symmetric majority game
with n ≤ 10.16

The equilibrium coalition structures of symmetric majority games are not
easily interpreted. When the majority required to win (m) is small, it appears
that the minimal winning coalition forms, members of the winning coalition all
obtain 1/m and external members, who obtain 0, organize themselves freely.
When the number of votes required to win increases, the share of any member
of the winning coalition decreases and it may become profitable to form smaller
coalitions. This effect explains why the minimal winning coalition does not
necessarily form in the symmetric majority gamesM(5, 4), M(6, 5), M(7, 6),
M(8, 6), M(9, 7), M(9, 8) andM(10, 8). However, if all votes are required to
win, the only equilibrium coalition structures are the grand coalition and the
coalition consisting of singletons. In fact, in that case, the probability to win is
independent of the size of the coalition, and players should always try to form
the smallest coalitions. Hence, the only possible equilibrium coalition structure
are the coalition consisting of singletons and the grand coalition which yield
the same payoff of 1/n to all players. Finally, it should be noted that Hart and
Kurz (1984) observed that the majority gameM(10, 8) has noα stable coalition
structure. However, in my framework, an equilibrium coalition structure exists
for this game.

16 The computations leading to the characterization of the coalition structures are not reproduced
here and are available from the author.
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TABLE I. Coalition Structures in Symmetric Majority Games

n = 3
m = 2 m = 3

ab|c a|b|c
abc

n = 4
m = 3 m = 4

abc|d a|b|c|d
abcd

n = 5
m = 3 m = 4 m = 5

abc|d|e ab|cd|e a|b|c|d|e
abc|de abcd|e abcde

n = 6
m = 4 m = 5 m = 6

abcd|e| f abc|de| f a|b|c|d|e| f
abcd|ef abcdef

n = 7
m = 4 m = 5 m = 6 m = 7

abcd|e| f |g abcde| f |g abcdef|g a|b|c|d|e| f |g
abcd|ef |g abcde| f g ab|cd|ef |g abcdef g
abcd|ef g abc|def|g

6. CONCLUSIONS

In this paper, I analyze a sequential noncooperative game of coalition forma-
tion when the rule of payoff division is fixed and payoffs depend on the whole
coalition structure. The extensive form of the game is closely related to the exten-
sive forms proposed by Selten (1981), Chatterjeeet al. (1993) and Moldovanu
(1992) for games of coalitional bargaining. I show that any core stable structure
can be obtained as the outcome of a stationary perfect equilibrium, provided that
the set of stationary perfect equilibria is nonempty. I analyze games described by
symmetric valuations and provide a condition under which, when all the players
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TABLE I. Continued.

n = 8
m = 5 m = 6 m = 7 m = 8

abcde| f |g|h abcdef|g|h abcdef g|h a|b|c|d|e| f |g|h
abcde| f g|h abcdef|gh abcdef gh
abcde| f gh abc|def|g|h

abc|def|gh

n = 9
m = 5 m = 6 m = 7 m = 8 m = 9

abcde| f |g|h|i abcdef|g|h|i abcd|ef g|hi ab|cd|ef |gh|i a|b|c|d|e| f |g|h|i
abcde| f g|h|i abcdef|gh|i abcd|ef g|h|i abcdef gh|i abcdef ghi
abcde| f g|hi abcdef|ghi
abcde| f gh|i
abcde| f ghi

n = 10
m = 6 m = 7 m = 8 m = 9 m = 10

abcdef|g|h|i | j abcdef g|h|i | j abcdef gh|i | j abcdef ghi| j a|b|c|d|e| f |g|h|i | j
abcdef|gh|i | j abcdef g|hi | j abcdef gh|i j abcdef ghi j
abcdef|gh|i j abcdef g|hi j abcd|ef g|h|i | j
abcdef|ghi| j abcd|ef gh|i j
abcdef|ghi j

are identical ex ante, the game admits a symmetric equilibrium coalition struc-
ture which is generically unique up to a permutation of the players. I also provide
examples to show that stationary perfect equilibria may fail to exist in general
valuations and that the noncooperative approach followed here is unrelated to
standard cooperative game-theoretic solution concepts.

The determination of the equilibrium coalition structure in the sequential game
of coalition formation is driven by two basic features of the extensive form.
First, the exogenous rule of order imposes a fixed order of moves by players
in the game. Depending on the valuation, players may have an advantage in
moving first, second or in any other position in the game. The rule of order thus
creates an asymmetry among players which is determined outside the game.
An important direction for future research is to eliminate this asymmetry and
to explore conditions under which the equilibrium of the extensive form game
is independent of the rule of order. This line of research has been pursued by
Moldovanu and Winter (1995) in the context of games of coalitional bargaining.
They show that order independent equilibria only exist when the underlying
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game in characteristic function form, as well as all its restrictions, have nonempty
cores.

The second important feature of the extensive form is the commitment power
of the players. I assume that, by accepting the offer to join a coalition, players are
bound to remain in that coalition whatever coalition structure the other players
may form. This implies that coalitions are formed one after another and that
coalitions may not compete to attract members. In fact, this sequential structure
of the process of coalition formation is the feature of the extensive form which
guarantees the existence of an equilibrium. Extensive form games where players
do not commit to stay in a coalition can easily be constructed. The existence and
characterization of equilibria in these games constitutes a difficult but important
area for future research.

Finally, the model analyzed in this paper assumes that the coalitional worth is
divided according to a fixed sharing rule. While this approach greatly simplifies
the analysis, it clearly restricts the applicability of the model. The study of ex-
tensive form procedures allowing players to bargain over the worth of coalitions
seems to me to be the foremost topic for future research.

APPENDIX: PROOF OF PROPOSITION 5.1

The proof consists in three steps. In the first two steps, I explicitly construct
the stationary perfect equilibria of the game. Observe first that the only payoff-
relevant part of any history of the game is thenumber of coalitions which have
already been formed. To fix notations, letK be the number of coalitions already
formed, andm be the number of remaining players in the game, after a given
history.

Step1. After a given history, suppose thatK coalitions have been formed,
and thatm players remain in the game. Suppose furthermore that, if a coalition
of sizeµ is formed, the remainingm − µ players remain isolated. Then the
optimal choice ofµ is given by:

µ∗ = 1 if m ≤ (K + 1)2

µ∗ = m if m ≥ (K + 1)2

Given that the remainingm− µ players form singletons, the optimal number
of players in a coalition,µ∗, solves:

maxF(µ) = (α − λ)2

µ(K + m − µ + 2)2

subject to 1≤ µ ≤ m.
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The function 1/µ(K + m − µ + 2)2 is strictly decreasing for 1≤ µ ≤
(K + m+ 2)/3, and strictly increasing for(K + m+ 2)/3 ≤ µ ≤ m. Hence, the
optimal choiceµ∗ is either 1 orm. Now,

F(1) = (α − λ)2

(K + m + 1)2

F(m) = (α − λ)2

m(K + 2)2
.

Solving the quadratic inm, I obtain:

F(1) ≤ F(m) if and only if m ≥ (K + 1)2.

Step2. The game admits two stationary perfect equilibria, given by
Strategy1.

If m < (K + 1)2 chooseµ = 1

If (K + 1)2 ≤ m < (K + 2)2 + 1 chooseµ = m

If (K + 2)2 + 1 ≤ m chooseµ = 1

Strategy2.

If m ≤ (K + 1)2 chooseµ = 1

If (K + 1)2 < m ≤ (K + 2)2 + 1 chooseµ = m

If (K + 2)2 + 1 < m chooseµ = 1.

The two equilibria only differ in the rules chosen to break ties. In the first
equilibrium, if a player is indifferent between forming a cartel of sizem or
forming a singleton, she chooses to form a cartel. In the second equilibrium, she
chooses to remain isolated. In the remainder of the proof, I focus on strategy 1,
and show thatgiven that ties are broken according to the rule that indifferent
players choose to form coalitions, strategy 1 is the unique stationary perfect
equilibrium of the game.

The proof is by induction on the number of remaining players in the game.
If m = 2, the player before last chooses whether to form a cartel of size 2 or
to remain isolated, in which case the last player remains isolated as well. Since
K ≥ 0, 2< (K + 2)2 + 1. Hence strategy 1 prescribes that a cartel is formed if
and only if 2≥ (K + 1)2, and by Step 1, this is the unique optimal strategy for
the player before last.
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Suppose now that, for anym′ < m, strategy 1 is the unique equilibrium
strategy. Consider the different possibilities withm players remaining in the
game.

If m < (K + 1)2, then∀m′ < m, m′ < (K + 2)2. Hence, whatever coalition
the player forms, all subsequent players choose to remain isolated. Then, by
Step 1, the unique optimal strategy is to choose to form a singleton.

If now (K + 1)2 ≤ m < (K + 2)2 + 1, similarly,∀m′ < m, m′ < (K + 2)2.
Hence, irrespective of the coalition formed by the player, the subsequent players
choose to remain isolated and, by Step 1, sincem ≥ (K +1)2, the player should
choose to form a coalition of sizem.

Finally, whenm ≥ (K +2)2 +1, different possibilities have to be considered.
The player may either choose to form a coalitionµ such that(m−µ) ≥ (K +2)2,
in which case the remaining players form a coalition, or a coalitionµ such that
(m − µ) < (K + 2)2, in which case the remaining players choose to remain
separate.

When the coalition sizeµ is such that(m−µ) < (K +2)2, the player’s payoff
is given by:

F(µ) = (α − λ)2

µ(K + 2 + m − µ)2
.

From Step 1, sincem > (K +1)2, the optimal choice of coalition size isµ∗ = m.
In the case whereµ is chosen small enough, other players form a coalition

later in the game. Given the specification of the strategy, after the formation of
the coalition of sizeµ, a group of players will choose to remain separate, and
the last players will form a single coalition. The number of players who choose
to remain isolated,ν, is the unique integer satisfying:

(K + 2 + ν)2 ≤ (m − µ − ν) < (K + 3 + ν)2 + 1.

A simple computation shows thatν is the first integer following:

ν∗ =
√

9 + 4(K + m − µ) − (2K + 5)

2
.

Hence, the payoff to a player who chooses a coalition of sizeµ wherem− µ ≤
(K + 2)2 is given by:

G(µ) = (α − λ)2

µ(K + 3 + ν∗)2
,

or

G(µ) = (α − λ)2

µ(
√

9 + 4(K + m − µ) + 1)2
.
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The optimal valueµ∗ is thus the minimum over the interval [1, m − (K + 2)2]
of the function

H(µ) = µ(
√

9 + 4(K + m − µ) + 1)2.

Next consider the derivativeH ′ of H ,

H ′(µ) = (
√

9 + 4(K + m − µ) + 1)(
√

9 + 4(K + m − µ)

+ 1 − 4µ√
9 + 4(K + m − µ)

.

A study of the sign ofH ′ shows that the functionH is increasing up to the value
µ = (16K + 16m + 35+ √

73+ 32K + 32m)/32, and decreasing thereafter.
Hence, the optimal choice ofµ,µ∗, is eitherµ∗ = 1, orµ∗ = m−(K +2)2. Now,
a simple computation shows that the choiceµ∗ = m − (K + 2)2 is dominated
by µ∗ = m.

To complete this step, it suffices to show thatµ∗ = 1 is the optimal choice,
that is thatH(1) ≤ m(K + 2)2.

H(1) = 1
4(

√
9 + 4(K + m − 1) + 1)2

= 1
2(3 + 2K + 2m + √

9 + 4(K + m − 1)

< 1
2(3 + 2K + 2m + 9 + 4(K + m − 1))

< (3K + 3m + 4).

Hence,

m(K + 2)2 − H(1) > m(K + 2)2 − (3K + 3m + 4)

> m(K 2 + 4K + 1) − 3K − 4

> (K + 2)2(K 2 + 4K + 1) − 3K − 4

> 0.

Step3. The coalition structure generated by the stationary perfect equilibria
corresponding to strategies 1 and 2 is given byπ∗ = (T∗

1 , { j }j 6∈T∗
1
) wheret∗

1 is

the first integer following(2n + 3 − √
4n + 5)/2. (If

√
4n + 5 is an integer,t∗

1
can take on the two values(2n + 3 − √

4n + 5)/2 and(2n + 5 − √
4n + 5)/2.)

WhenK = 0, strategy 1 prescribes that the first player forms a singleton. In
fact, singletons will continue to be formed as long asm ≥ (n − m + 2)2 + 1.
The unique coalition formed will compriset∗ members, wheret∗ is the unique
integer such that

(n − t∗ + 1)2 ≤ t∗ < (n − t∗ + 2)2 + 1.



122 FRANCIS BLOCH

It is easy to show thatt∗ is the first integer following((2n+3)−√
4n + 5)/2.

The only possible difficult arises when there exist two integers,t∗
1 andt∗

2 such
thatt∗

1 = (n − t∗
1 + 1)2 andt∗

2 = (n − t∗
2 + 2)2 + 1. Then, strategy 1 prescribes

that a coalition of sizet∗
1 is formed whereas strategy 2 induces a coalition of size

t∗
2 .
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