

Mixed quantifiers

- The order of quantifiers makes a difference:
 - $\forall x \exists y (\text{Hates}(x,y))$ vs $\exists x \forall y (\text{Hates}(x,y))$
 - $\forall x \exists y (\text{SameCol}(x,y))$ vs $\exists x \forall y (\text{SameCol}(x,y))$

The step-by-step method of translation

- This is very useful for sentences that contain several quantified noun phrases.
- EG: 'Every dog lives in some kennel'
 - Step one: $\forall x(\text{Dog}(x) \rightarrow \text{lives-in-some-kennel}(x))$
 - Step two: $\forall x(\text{Dog}(x) \rightarrow \exists y(\text{Kennel}(y) \wedge \text{LivesIn}(x,y)))$

- EG: ‘Every dog who lives in a kennel has an owner who lives in a house’.
 - Step One: $\forall x(Dog(x) \wedge \text{lives-in-a-kennel}(x) \rightarrow \text{has-an-owner-who-lives-in-a-house}(x))$.
 - Step Two: $\forall x(Dog(x) \wedge \exists y(\text{Kennel}(y) \wedge \text{LivesIn}(x,y)) \rightarrow \exists z(\text{Owns}(x,z) \wedge \text{lives-in-a-house}(z)))$.
 - Step Three: $\forall x(Dog(x) \wedge \exists y(\text{Kennel}(y) \wedge \text{LivesIn}(x,y)) \rightarrow \exists z(\text{Owns}(x,z) \wedge \exists y(\text{House}(y) \wedge \text{LivesIn}(z,y))))$.

Ambiguity

- Quantifiers in English are a rich source of ambiguity.
 - ‘Some poor sucker is mugged every minute’.
 - $? \exists x(\text{Poor}(x) \wedge \text{Sucker}(x) \wedge \text{mugged-every-minute}(x))$
 - $\forall x(\text{Minute}(x) \rightarrow \text{some-poor-sucker-is-mugged-during}(x))$
 - Often this ambiguity is resolved by context.